【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求圓C的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)和直線l的極坐標(biāo)方程;
(2)若直線l與圓C只有一個(gè)公共點(diǎn),且a<1,求a的值.

【答案】
(1)解:圓C的方程為ρ=2acosθ(a≠0),即ρ2=2aρcosθ,化為直角坐標(biāo)方程:x2+y2﹣2ax=0,配方為(x﹣a)2+y2=a2,圓心C(a,0),半徑r=|a|.

設(shè)直線l的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t化為:4x﹣3y+5=0


(2)解:∵直線l與圓C只有一個(gè)公共點(diǎn),且a<1,∴ =|a|,化為:4a+5=±5a,解得:a=
【解析】(1)圓C的方程為ρ=2acosθ(a≠0),即ρ2=2aρcosθ,利用ρ2=x2+y2 , x=ρcosθ即可化為直角坐標(biāo)方程.設(shè)直線l的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t化為p普通方程.(2)由直線l與圓C只有一個(gè)公共點(diǎn),且a<1,因此直線與圓相切,可得 =|a|,解出a即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1,2,3,4,5中隨機(jī)取出兩個(gè)不同的數(shù),則其和為奇數(shù)的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C 與y 軸交于A,B 兩點(diǎn),且|AB|=2.
(Ⅰ)求橢圓C 的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C上的一個(gè)動(dòng)點(diǎn),且點(diǎn)P在y軸的右側(cè).直線PA,PB與直線x=4分別交于M,N兩點(diǎn).若以MN為直徑的圓與x 軸交于兩點(diǎn)E,F(xiàn),求點(diǎn)P橫坐標(biāo)的取值范圍及|EF|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0)的最小正周期為π,則該函數(shù)的圖象(
A.關(guān)于直線x= 對(duì)稱
B.關(guān)于點(diǎn)( ,0)對(duì)稱
C.關(guān)于直線x=﹣ 對(duì)稱
D.關(guān)于點(diǎn)( ,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex2(x2-3).

(1)求曲線yf(x)在點(diǎn)(0,f(0))處的切線方程;

(2)求函數(shù)yf(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)上購物系統(tǒng)是一種具有交互功能的商業(yè)信息系統(tǒng),它在網(wǎng)絡(luò)上建立一個(gè)虛擬的購物商場,使購物過程變得輕松、快捷、方便.網(wǎng)上購物系統(tǒng)分為前臺(tái)管理和后臺(tái)管理,前臺(tái)管理包括瀏覽商品、查詢商品、訂購商品、用戶注冊(cè)等功能;后臺(tái)管理包括公告管理、商品管理、訂單管理、投訴管理和用戶管理等模塊.根據(jù)這些要求畫出該系統(tǒng)的結(jié)構(gòu)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冶煉某種金屬可以用舊設(shè)備和改造后的新設(shè)備,為了檢驗(yàn)用這兩種設(shè)備生產(chǎn)的產(chǎn)品中所含雜質(zhì)的關(guān)系,調(diào)查結(jié)果如下表所示:

分類

雜質(zhì)高

雜質(zhì)低

舊設(shè)備

37

121

新設(shè)備

22

202

根據(jù)以上數(shù)據(jù),則(  )

A. 含雜質(zhì)的高低與設(shè)備改造有關(guān)

B. 含雜質(zhì)的高低與設(shè)備改造無關(guān)

C. 設(shè)備是否改造決定含雜質(zhì)的高低

D. 以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),且AB=AD,BC=DC.

(1)求證:∥平面EFGH;

(2)求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有唯一的公共點(diǎn),求角α的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案