【題目】已知函數(shù)是定義在R上的偶函數(shù),且當時,.

1)當時,求的表達式:

2)求在區(qū)間的最大值的表達式;

3)當時,若關于x的方程a,)恰有10個不同實數(shù)解,求a的取值范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)偶函數(shù)的特點,可知,可得結(jié)果.

2)采用分類討論方法,,去掉絕對值研究函數(shù)在區(qū)間上的單調(diào)性,可得結(jié)果.

3)畫出函數(shù)圖像,利用換元法,得出,可轉(zhuǎn)化為兩個根為,可得,最后計算可得結(jié)果.

1)令,則

由當時,

所以

又函數(shù)是定義在R上的偶函數(shù),

所以

所以當時,

2)當時,

如圖

可知函數(shù)的最大值在處取得,

所以,

①若,此時

②若,此時;

時,,對稱軸為

③若,即時,則,

④若,即時,則

綜上,得

3)當時,

如圖

的圖象可知,

時,方程有兩解;

時,方程有四解;

時,方程有六解;

時,方程有三解;

時,方程無解.

要使方程a,

恰有10個不同實數(shù)解,

則關于t的方程的一個根為1,

另一個根,設,則有

所以a的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是( )

A.命題“若,則”的逆否命題是“若,則

B.”是“”的充分不必要條件

C.為假命題,則、均為假命題

D.命題:“,使得”,則非:“,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準:(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖

1)求頻率分布直方圖中的值;

2)若該市政府看望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若函數(shù)在區(qū)間上存在唯一零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線的參數(shù)方程為 .

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)設曲線經(jīng)過伸縮變換得到曲線,曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)

為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額.

1)若袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,求

顧客所獲的獎勵額為60元的概率

顧客所獲的獎勵額的分布列及數(shù)學期望;

2)商場對獎勵總額的預算是60000元,并規(guī)定袋中的4個球只能由標有面值10元和50元的兩種球組成,或標有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校對高二600名學生進行了一次知識測試,并從中抽取了部分學生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.

1)填寫頻率分布表中的空格,補全頻率分布直方圖,并標出每個小矩形對應的縱軸數(shù)據(jù);

分組

頻數(shù)

頻率

2

004

8

016

10

________

________

________

14

028

合計

________

100

2)請你估算該年級學生成績的中位數(shù);

3)如果用分層抽樣的方法從樣本分數(shù)在的人中共抽取6人,再從6人中選2人,求2人分數(shù)都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是函數(shù)(其中常數(shù))圖象上的兩個動點,點,若的最小值為0,則函數(shù)的最大值為__________

查看答案和解析>>

同步練習冊答案