【題目】已知橢圓的右焦點為,原點為,橢圓的動弦過焦點且不垂直于坐標軸,弦的中點為,過且垂直于線段的直線交射線于點.
(1)證明:點在定直線上;
(2)當最大時,求的面積.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)設所在直線為,聯(lián)立方程組,得到,進而得到所在直線方程,再聯(lián)立方程組,即可得到頂點的坐標.
(2)由(1)得點的坐標為,求得向量則,利用向量的夾角公式,求解的最小值,得到此時,求得,即可求得三角形的面積.
試題解析:
(1)顯然橢圓的右焦點的坐標為,
設所在直線為:,且.
聯(lián)立方程組:,得:;
其中,
點的坐標為所在直線方程為:.
所在的直線方程為:,
聯(lián)立方程組:,得,
故點在定直線上;
(2)由(1)得:由得點的坐標為,且,
則,
,
(當且僅當不等式取等號),
若取得最小值時,最大,此時;
;
;
.
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱中,且,是棱上的動點,是的中點.
(1)當是中點時,求證:平面;
(2)在棱上是否存在點,使得平面與平面所成銳二面角為,若存在,求的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩種產品的質量,從中分別隨機抽取了10件樣品,測量產品中某種元素的含量(單位:毫克),如圖所示是測量數據的莖葉圖.規(guī)定:當產品中的此中元素的含量不小于18毫克時,該產品為優(yōu)等品.
(1)試用樣品數據估計甲、乙兩種產品的優(yōu)等品率;
(2)從乙產品抽取的10件樣品中隨機抽取3件,求抽到的3件樣品中優(yōu)等品數的分布列及其數學期望;
(3)從甲產品抽取的10件樣品中有放回地隨機抽取3件,也從乙產品抽取的10件樣品中有放回地隨機抽取3件;抽到的優(yōu)等品中,記“甲產品恰比乙產品多2件”為事件,求事件的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為評估設備生產某種零件的性能,從設備生產零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經計算,樣本的平均值,標準差,以頻率值作為概率的估計值.
(Ⅰ)為評判一臺設備的性能,從該設備加工的零件中任意抽取一件,記其直徑為,并根據以下不等式進行評判(表示相應事件的概率);①;
②;③.
評判規(guī)則為:若同時滿足上述三個不等式,則設備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設備的性能等級.
(2)將直徑小于等于或直徑大于的零件認為是次品.
(ⅰ)從設備的生產流水線上隨意抽取2件零件,計算其中次品個數的數學期望;
(ⅱ)從樣本中隨意抽取2件零件,計算其中次品個數的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】響應“文化強國建設”號召,某市把社區(qū)圖書閱覽室建設增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調查,統(tǒng)計顯示,男士喜歡閱讀古典文學的有64人,不喜歡的有56人;女士喜歡閱讀古典文學的有36人,不喜歡的有44人.
(1)能否在犯錯誤的概率不超過0.25的前提下認為喜歡閱讀古典文學與性別有關系?
(2)為引導市民積極參與閱讀,有關部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學.現從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學的人數,求的分布列及數學期望.
附:,其中.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側面底面,且是以為底的等腰三角形.
(Ⅰ)證明:
(Ⅱ)若四棱錐的體積等于.問:是否存在過點的平面分別交,于點,使得平面平面?若存在,求出的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當點在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標原點,且時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com