已知A,B是拋物線y2=2px(p>0)上兩點(diǎn),O為坐標(biāo)原點(diǎn),若|OA|=|OB|,且△AOB的垂心恰好是此拋物線的焦點(diǎn),則直線AB的方程是( 。
分析:由拋物線的對(duì)稱性知A、B關(guān)于x軸對(duì)稱,設(shè)出它們的坐標(biāo),利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于-1,求出A、B坐標(biāo)即可解決.
解答:解:由A、B是拋物線y2=2px(p>0)的兩點(diǎn),|AO|=|BO|,
及拋物線的對(duì)稱性知,A、B關(guān)于x軸對(duì)稱.
設(shè)直線AB的方程是 x=m,則  A( m,
2pm
)、B(m,-
2pm

|△AOB的垂心恰好是拋物線的焦點(diǎn)F(
p
2
,0 )
∴AF⊥OB,KAF•KOB=-1,
2pm
-0
m-
p
2
-
2pm
-0
m-0
=-1
∴m=
5p
2
,∴直線AB的方程是 x=
5p
2

故選D.
點(diǎn)評(píng):本小題主要考查拋物線的簡(jiǎn)單性質(zhì)、三角形垂心性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B是拋物線y2=4x上的兩點(diǎn),O是拋物線的頂點(diǎn),OA⊥OB.
(I)求證:直線AB過定點(diǎn)M(4,0);
(II)設(shè)弦AB的中點(diǎn)為P,求點(diǎn)P到直線x-y=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B是拋物線x2=2py(p>0)上的兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),l為拋物線的準(zhǔn)線.
(1)若過A點(diǎn)的拋物線的切線與y軸相交于C點(diǎn),求證:|AF|=|CF|;
(2)若
OA
OB
+p2=0
(A、B異于原點(diǎn)),直線OB與過A且垂直于X軸的直線m相交于P點(diǎn),求P點(diǎn)軌跡方程;
(3)若直線AB過拋物線的焦點(diǎn),分別過A、B點(diǎn)的拋物線的切線相交于點(diǎn)T,求證:
AT
BT
=0
,并且點(diǎn)T在l上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青浦區(qū)二模)(理)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過點(diǎn)A且斜率為-1的直線l1,與過點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0=5,試用線段AB中點(diǎn)的縱坐標(biāo)表示線段AB的長(zhǎng)度,并求出中點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青浦區(qū)二模)(文)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過點(diǎn)A且斜率為-1的直線l1,與過點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0>2,試用x0表示線段AB中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B是拋物線x2=2py(p>0)上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),非零向量
OA
, 
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|

(Ⅰ)求證:直線AB經(jīng)過一定點(diǎn);
(Ⅱ)當(dāng)AB的中點(diǎn)到直線y-2x=0的距離的最小值為
2
5
5
時(shí),求p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案