已知向量=(1,1),=(1,t),若=3,則向量與向量夾角的余弦值為( )
A.
B.
C.
D.
【答案】分析:利用向量的坐標形式的數(shù)量積公式表示出向量的數(shù)量積,列出方程,求出t;利用向量模的運算法則求出兩個向量的模,利用向量的模、夾角形式的數(shù)量積公式求出夾角余弦.
解答:解:由已知得:
,
解得t=2
設兩個向量的夾角為θ
||=;


故選D
點評:向量的數(shù)量積公式有兩種形式,若知向量的坐標就利用坐標形式的數(shù)量積公式;若求向量的夾角就需要模、夾角形式的數(shù)量積公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(1,1),向量
n
與向量
m
的夾角為
4
,且
m
n
=-1

(1)求向量
n
;
(2)設向量
a
=(1,0),向量
b
=(cosx,2cos2(
π
3
-
x
2
))
,若
a
n
=0,記函數(shù)f(x)=
m
•(
n
+
b
)
,求此函數(shù)的單調遞增區(qū)間和對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•煙臺三模)已知向量
a
=(1,1),向量
b
與向量
a
的夾角為
3
4
π
,且
a
b
=-1.
(1)求向量
b
;
(2)若向量
b
q
=(1,0)的夾角為
π
2
,向量
p
=(cosA,2cos2
C
2
),其中A,C為△ABC的內角,且A+C=
2
3
π
,求|
b
+
p
|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(m,-1),
b
=(sinx,cosx),f(x)=
a
b
且滿足f(
π
2
)=1

(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的最大值及其對應的x值;
(3)若f(α)=
1
5
,求
sin2α-2sin2α
1-tanα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源:設計選修數(shù)學2-1蘇教版 蘇教版 題型:013

已知向量a=(1,1,0),b=(-1,0,2)且kab與2ab互相垂直,則k的值是

[  ]
A.

1

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)已知向量a=(1,1),b=(1,0),c滿足a·c=0且|a|=|c|,b·c>0.

(1)求向量c;(2)若映射f:(x,y)→(x1,y1)=xa+yc,求映射f下(1,2)的原象.

查看答案和解析>>

同步練習冊答案