分析 (1)當(dāng)a=1時(shí),函數(shù)f(x)=x2-3x+lnx,f′(x)=$\frac{(2x-1)(x-1)}{x}$.令f′(x)=0得:x=$\frac{1}{2}$或1.列出表格即可得出函數(shù)的單調(diào)性極值;
(2)對(duì)于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,則有f(x)max≤g(x)min.利用導(dǎo)數(shù)分別在定義域內(nèi)研究其單調(diào)性極值與最值即可.
解答 解:(1)當(dāng)a=1時(shí),函數(shù)f(x)=x2-3x+lnx,f′(x)=$\frac{(2x-1)(x-1)}{x}$.
令f′(x)=0得:x=$\frac{1}{2}$或1
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (0,$\frac{1}{2}$) | $\frac{1}{2}$ | ($\frac{1}{2}$,1) | 1 | (1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 | 極大 | 單調(diào)遞減 | 極小 | 單調(diào)遞增 |
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了恒成立問(wèn)題的等價(jià)轉(zhuǎn)化方法,考查了分類討論的思想方法,考查了推理能力和計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com