分析 (1)題目明確了要求橢圓的焦點在x軸上,可以設其標準方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a>>0),結(jié)合題意可得長軸長2a為12,則a=6,再由離心率公式可得c的值,計算可得b的值,將a、b的值代入橢圓的標準方程可得答案;
(2)根據(jù)題意,設設要求橢圓的標準方程為:mx2+ny2=1,(m、n>0),結(jié)合題意可得$\left\{\begin{array}{l}{\frac{2}{3}m+3n=1}\\{\frac{8}{9}m+n=1}\end{array}\right.$,解可得m、n的值,將其代入橢圓的方程可得答案.
解答 解:(1)根據(jù)題意,要求橢圓的焦點在x軸上,可以設其標準方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a>>0),
又由題意,其長軸長為12,即2a=12,則a=6,
其離心率為$\frac{2}{3}$,即e=$\frac{c}{a}$=$\frac{2}{3}$,則c=4,
故b2=a2-c2=20,
故橢圓的標準方程為:$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1;
(2)根據(jù)題意,設要求橢圓的標準方程為:mx2+ny2=1,(m、n>0)
橢圓過點A$(\frac{{\sqrt{6}}}{3},\sqrt{3})$和 B$(\frac{{2\sqrt{2}}}{3},1)$,
則有$\left\{\begin{array}{l}{\frac{2}{3}m+3n=1}\\{\frac{8}{9}m+n=1}\end{array}\right.$,
解可得m=1,n=$\frac{1}{9}$,
故要求橢圓的標準方程為:$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{9}$=1.
點評 本題考查橢圓的標準方程的求法,可以依據(jù)題意,設出橢圓的標準方程,然后用待定系數(shù)法進行求解.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 2個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{7\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | $\frac{7\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{8}$ | B. | $\frac{{\sqrt{3}}}{16}$ | C. | $\frac{{\sqrt{3}}}{24}$ | D. | $\frac{{\sqrt{3}}}{48}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com