已知橢圓C1
x2
16
+
y2
15
=1的左焦點為F,點P為橢圓上一動點,過點P向以F為圓心,1為半徑的圓作切線PM、PN,其中切點為M、N,則四邊形PMFN面積的最大值為( 。
A、2
6
B、
14
C、
15
D、5
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由切線的性質(zhì)可得S四邊形PMFN=
1
2
|FM|•|PM|
=|PM|.因此要使四邊形PMFN面積取得最大值,|PM|必須取得最大值,因此|PF|必須取得最大值,當(dāng)P點為橢圓的右頂點時,|PF|取得最大值a+c.
解答: 解:如圖所示,
由橢圓C1
x2
16
+
y2
15
=1可得a=4,c=
a2-b2
=1,
∴F(-1,0).
由切線PM、PN,可得PM⊥MF,PN⊥FN.
S四邊形PMFN=
1
2
|FM|•|PM|
=|PM|.
因此要使四邊形PMFN面積取得最大值,
則|PM|必須取得最大值,因此|PF|必須取得最大值,
當(dāng)P點為橢圓的右頂點時,|PF|取得最大值a+c=4+1=5.
∴邊形PMFN面積最大值為5.
故選:D.
點評:本題考查了橢圓與圓的標(biāo)準(zhǔn)方程及其性質(zhì)、圓的切線的性質(zhì)、勾股定理、三角形的面積計算公式,考查了推理能力和計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)某種動物的體重y(單位:千克)與身長x(單位:厘米)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)建立的回歸直線方程為
y
=0.85x-85.71,則下列結(jié)論中不正確的是( 。
A、y與x具有正的線性相關(guān)關(guān)系
B、回歸直線必定經(jīng)過樣本中心點(
.
x
,
.
y
C、若某一種該種動物身長增加1厘米,則其體重必定為0.85千克
D、若某一只該種動物身長170厘米,則其體重必定為58.79千克

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=
3
i和復(fù)數(shù)z2=
1
2
-
3
6
i,則復(fù)數(shù)z1
.
z2
的值為(  )
A、-
1
2
+
3
2
i
B、
1
2
+
3
2
i
C、
3
2
+
1
2
i
D、
3
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+a與g(x)=logax(a>0且a≠1)在同一坐標(biāo)系中的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
y≥x
x+2y≤2
x≥-2
,則z=x2-x+y2的最小值為( 。
A、
17
36
B、
2
9
C、
1
8
D、-
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若m>0,則關(guān)于x的方程x2+x-m=0有實數(shù)根”與它的逆命題、否命題、逆否命題中,真命題的個數(shù)為( 。
A、0B、1C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA﹑PB是⊙O的切線,切點分別為A﹑B,線段OP交⊙O于點C,若PA=8,PC=4,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=2,求下列表達(dá)式的值:
(1)
4sinα-2cosα
5cosα+3sinα
;  
(2)sin2α+sin2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3+bx(a≠0)的圖象在點(1,f(1))處的切線斜率為-6,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案