【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(I)寫出曲線與圓的極坐標(biāo)方程;
(II)在極坐標(biāo)系中,已知射線分別與曲線及圓相交于,當(dāng)時(shí),求的最大值.
【答案】(I),;(II).
【解析】
(I)將曲線的參數(shù)消去轉(zhuǎn)化為普通方程,然后轉(zhuǎn)化為極坐標(biāo)方程.利用普通方程與極坐標(biāo)方程的互化公式將圓的普通方程轉(zhuǎn)化為直角坐標(biāo)方程.(II)由于兩個(gè)三角形的高相同,故將面積的比轉(zhuǎn)化為,將代入曲線和圓的極坐標(biāo)方程,求得,,由此求得的表達(dá)式,利用輔助角公式進(jìn)行化簡,并根據(jù)三角函數(shù)的值域,求得的最大值.
(Ⅰ)曲線的普通方程為,由普通方程與極坐標(biāo)方程的互化公式的的極坐標(biāo)方程為:,即. 曲線的極坐標(biāo)方程為: .
(Ⅱ)因?yàn)?/span>與以點(diǎn)為頂點(diǎn)時(shí),它們的高相同,即 ,
由(Ⅰ)知,,所以 ,
由得,所以當(dāng)即時(shí),有最大值為,
因此 的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐,點(diǎn)是的中點(diǎn),且,,過點(diǎn)作一個(gè)截面,使截面平行于和,則截面的周長為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:, 過點(diǎn)的直線:與橢圓交于M、N兩點(diǎn)(M點(diǎn)在N點(diǎn)的上方),與軸交于點(diǎn)E.
(1)當(dāng)且時(shí),求點(diǎn)M、N的坐標(biāo);
(2)當(dāng)時(shí),設(shè),,求證:為定值,并求出該值;
(3)當(dāng)時(shí),點(diǎn)D和點(diǎn)F關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,若△MNF的內(nèi)切圓面積等于,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓的內(nèi)接矩形的周長最大值為.
(1)求圓O的方程;
(2)若過點(diǎn)的直線與圓O交于A,B兩點(diǎn),如圖所示,且直線的斜率,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當(dāng)年的捕魚期.某漁業(yè)捕撈隊(duì)對(duì)噸位為的20艘捕魚船一天的捕魚量進(jìn)行了統(tǒng)計(jì),如下表所示:
捕魚量(單位:噸) | |||||
頻數(shù) | 2 | 7 | 7 | 3 | 1 |
根據(jù)氣象局統(tǒng)計(jì)近20年此地每年100天的捕魚期內(nèi)的晴好天氣情況如下表(捕魚期內(nèi)的每個(gè)晴好天氣漁船方可捕魚,非晴好天氣不捕魚):
晴好天氣(單位:天) | |||||
頻數(shù) | 2 | 7 | 6 | 3 | 2 |
(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)
(Ⅰ)估計(jì)漁業(yè)捕撈隊(duì)噸位為的漁船單次出海的捕魚量的平均數(shù);
(Ⅱ)已知當(dāng)?shù)佤~價(jià)為2萬元/噸,此種捕魚船在捕魚期內(nèi)捕魚時(shí),每天成本為10萬元/艘,若不捕魚,每天成本為2萬元/艘,若以(Ⅰ)中確定的作為上述噸位的捕魚船在晴好天氣捕魚時(shí)一天的捕魚量.
①請(qǐng)依據(jù)往年天氣統(tǒng)計(jì)數(shù)據(jù),試估計(jì)一艘此種捕魚船年利潤不少于1600萬元的概率;
②設(shè)今后3年中,此種捕魚船每年捕魚情況一樣,記一艘此種捕魚船年利潤不少于1600萬元的年數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來越大.長沙某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?并指出是正相關(guān)還是負(fù)相關(guān);
(2)①求出關(guān)于的回歸方程;
②若該通信公司在一個(gè)類似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請(qǐng)用所求回歸方程預(yù)測(cè)長沙市一個(gè)月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù),回歸直線方程,
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題中正確的是( )
A.空間的任何一個(gè)向量都可用其他三個(gè)向量表示
B.若為空間向量的一組基底,則構(gòu)成空間向量的另一組基底
C.為直角三角形的充要條件是
D.任何三個(gè)不共線的向量都可構(gòu)成空間向量的一個(gè)基底
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com