(選做題)
已知ΔABC中AB=AC,D為ΔABC外接圓劣弧上的點(不與點A、C重合),延長BD至E,延長交BC的延長線于F,
(Ⅰ)求證:∠CDF= ∠EDF ;
(Ⅱ)求證:AB·AC·DF=AD·FC·FB。

證明:(Ⅰ)、、四點共圓,
,
,
∴∠ABC=∠ACB,且
,
。
(Ⅱ)由(Ⅰ)得,

所以相似,
,
,
,
,

根據(jù)割線定理得,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)已知正數(shù)a、b、c滿足a+b<2c,求證:c-
c2-ab
<a<c+
c2-ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=3
3
,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選做題)已知AB是圓O的直徑,AB=2,AC和AD是圓O的兩條弦,AC=
2
,AD=
3
,則
∠CAD的度數(shù)是
15°或75°
15°或75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(幾何證明選做題) 如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.則DE=
8
8

B.(坐標(biāo)系與參數(shù)方程選做題)已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)),當(dāng)α=
π
3
時,C1與C2的交點坐標(biāo)為
(1,0);(
1
2
,-
3
2
)
(1,0);(
1
2
,-
3
2
)

C.(不等式選做題)若不等式|2a-1|≤|x+
1
x
|
對一切非零實數(shù)a恒成立,則實數(shù)a的取值范圍
[-
1
2
3
2
]
[-
1
2
,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(極坐標(biāo)與參數(shù)方程選做題)
已知曲線C1的極坐標(biāo)方程為ρ=6cosθ,曲線C2的極坐標(biāo)方程為θ=
π4
(ρ∈R,曲線C1、C2相交于點A,B,則弦AB的長為
 

查看答案和解析>>

同步練習(xí)冊答案