已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…an,n≥3)具有性質(zhì)P;對(duì)任意i,j(1≤i<j≤n),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),現(xiàn)給出以下四個(gè)命題:
①數(shù)列0,2,4,6具有性質(zhì)P;
②若數(shù)列A具有性質(zhì)P,則a1=0;
③若數(shù)列A具有性質(zhì)P且a1≠0an-an-k=ak(k=1,2,…,(n-1);
④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a3=a1+a2
其中真命題有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
【答案】分析:根據(jù)數(shù)列:a1,a2,…an(0≤a1<a2…<an),n≥3時(shí)具有性質(zhì)P,對(duì)任意i,j(1≤i<j≤n),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),逐一驗(yàn)證,可知②錯(cuò)誤,其余都正確.
解答:解:①數(shù)列0,2,4,6中,aj+ai與aj-ai(1≤i<j≤3)兩數(shù)中都是該數(shù)列中的項(xiàng),
并且a4-a3=2是該數(shù)列中的項(xiàng),故①正確;
②由題設(shè)知:1,2,3具有性質(zhì)P,但a1=1≠0;故②不正確;
③若數(shù)列A具有性質(zhì)P,且a1≠0,
則an+an-k和an-an-k中至少有一個(gè)是該數(shù)列中的一項(xiàng),
∵an+an-k不一定是該數(shù)列中的項(xiàng),
∴an-an-k(k=1,2,…,n-1)一定在該數(shù)列中,
∴an-an-k=ak;故③正確.
④∵數(shù)列a1,a2,a3具有性質(zhì)P,0≤a1<a2<a3
∴a1+a3與a3-a1至少有一個(gè)是該數(shù)列中的一項(xiàng),
1°若a1+a3是該數(shù)列中的一項(xiàng),則a1+a3=a3,
∴a1=0,易知a2+a3不是該數(shù)列的項(xiàng)
∴a3-a2=a2,∴a1+a3=2a2
2°若a3-a1是該數(shù)列中的一項(xiàng),則a3-a1=a1或a2或a3,
i若a3-a1=a3同1°,
ii若a3-a1=a2,則a3=a2,與a2<a3矛盾,
iiia3-a1=a1,則a3=2a1,
綜上a1+a3=2a2.故④正確.
故選B.
點(diǎn)評(píng):本題是一道新型的探索性問題,認(rèn)真理解題目所給的條件后解決問題,通過解決探索性問題,進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問題與解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對(duì)任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng).現(xiàn)給出以下四個(gè)命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則a1=0;
④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2
其中真命題有
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對(duì)任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng)、現(xiàn)給出以下四個(gè)命題:①數(shù)列0,1,3具有性質(zhì)P;②數(shù)列0,2,4,6具有性質(zhì)P;③若數(shù)列A具有性質(zhì)P,則a1=0;④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2,其中真命題有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…an,n≥3)具有性質(zhì)P;對(duì)任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),現(xiàn)給出以下四個(gè)命題:
①數(shù)列0,2,4,6具有性質(zhì)P;
②若數(shù)列A具有性質(zhì)P,則a1=0;
③若數(shù)列A具有性質(zhì)P且a1≠0an-an-k=ak(k=1,2,…,(n-1);
④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a3=a1+a2
其中真命題有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省成都市新津中學(xué)高考數(shù)學(xué)一模試卷2(理科)(解析版) 題型:填空題

已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對(duì)任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng).現(xiàn)給出以下四個(gè)命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則a1=0;
④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2
其中真命題有   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)專項(xiàng)復(fù)習(xí):創(chuàng)新題(3)(解析版) 題型:解答題

已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對(duì)任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng).現(xiàn)給出以下四個(gè)命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則a1=0;
④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2
其中真命題有   

查看答案和解析>>

同步練習(xí)冊(cè)答案