【題目】曲線.給出下列結論:

①曲線關于原點對稱;

②曲線上任意一點到原點的距離不小于1;

③曲線只經(jīng)過個整點(即橫縱坐標均為整數(shù)的點).

其中,所有正確結論的序號是( )

A.①②B.C.②③D.

【答案】C

【解析】

代入,化簡后可確定①的真假性.對分成種情況進行分類討論,得出,由此判斷曲線上任意一點到原點的距離不小于1.進而判斷出②正確.對于③,首先求得曲線的兩個整點,然后證得其它點不是整點,由此判斷出③正確.

①,將代入曲線,得,與原方程不相等,所以曲線不關于原點對稱,故①錯誤.

②,對于曲線,由于,所以,所以對于任意一個,只有唯一確定的和它對應.函數(shù)是單調遞減函數(shù).當時,有唯一確定的;當時,有唯一確定的.所以曲線過點,這兩點都在單位圓上,到原點的距離等于.當時,,所以.當時,,所以.當時,,且

,

所以.

綜上所述,曲線上任意一點到原點的距離不小于1,所以②正確.

③,由②的分析可知,曲線過點,這是兩個整點.由可得,當時,若為整數(shù),必定不是某個整數(shù)的三次方根,所以曲線只經(jīng)過兩個整點.故③正確.

綜上所述,正確的為②③.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的對稱軸為坐標軸,焦點在軸上,離心率為,且經(jīng)過點.

(1)求橢圓的方程;

(2)設直線與橢圓相交于兩點,且,若原點在以為直徑的圓外,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)令

時,求函數(shù)在點處的切線方程;

時,恒成立,求的所有取值集合與的關系;

(Ⅱ)記,是否存在,使得對任意的實數(shù),函數(shù)上有且僅有兩個零點?若存在,求出滿足條件的最小正整數(shù),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD.

1)求PA與平面PCD所成角的正弦值;

2)棱PD上是否存在一點E,滿足?若存在,求AE的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,橢圓上的點到左焦點的最小值為.

(1)求橢圓的方程;

(2)已知直線軸交于點,過點的直線交于兩點,點為直線上任意一點,設直線與直線交于點,記,,的斜率分別為,,,則是否存在實數(shù),使得恒成立?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:極坐標與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的直角坐標方程;

(2)若射線 與曲線交于兩點,與曲線交于兩點,求取最大值時的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學界的震動.在1859年,德國數(shù)學家黎曼向科學院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結論.若根據(jù)歐拉得出的結論,估計10000以內的素數(shù)的個數(shù)為(素數(shù)即質數(shù),,計算結果取整數(shù))

A. 1089 B. 1086 C. 434 D. 145

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).

1)求這60天每天包裹數(shù)量的平均值和中位數(shù);

2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?

3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)當時,求函數(shù)在點處的切線方程;

2)若函數(shù)存在兩個極值點,

①求實數(shù)的范圍;

②證明:.

查看答案和解析>>

同步練習冊答案