、如圖所示,棱長為1的正方體
中,
,
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求M、N點的坐標(biāo)。(2)求
的長度。(12分)
解:(1)以D為坐標(biāo)原點,分別以
、
、
為
、
、
軸建立空間直角坐標(biāo)系.
……………………………………………6分
(2)
=1………………………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,
平面ABC,EB//DC,AC=BC=EB=2DC=2,
,P、Q分別為DE、AB的中點。
(Ⅰ)求證:PQ//平面ACD;
(Ⅱ)求幾何體B—ADE的體積;
(Ⅲ)求平面ADE與平面ABC所成銳二面角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
((本題滿分13分)
如圖,長方體
中,
,
,
,
分別是
的中點.
(1)求證:
⊥平面
;
(2)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
在斜三棱柱
中,
,
,又頂點
在底面
上的射影落在
上,側(cè)棱
與底面
成
角,
為
的中點.
(1)求證:
;
(2)如果二面角
為直二面角,試求側(cè)棱
與側(cè)面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
((本小題滿分12分)
如圖,
DC⊥平面
ABC,
EB //
DC,
AC =
BC =
EB = 2
DC=2,∠
ACB=120°,
P,
Q分別為
AE,
AB的中點。
(1)證明:
PQ //平面
ACD;
(2)求
AD與平面
ABE所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題12分)
如圖,ABCD是平行四邊形,
(1)求證:
(2)求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,四棱錐
的底面是矩形,
底面
,
為
邊的中點,
與平面
所成的角為45°,且
.
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
如圖,四棱錐
的底面
是一個邊長為4的正方形,側(cè)面
是正三角形,側(cè)面
底面
,
(Ⅰ)求四棱錐
的體積;
(Ⅱ)求直線
與平面
所成的角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知四棱錐
,底面
為菱形,
平面
,
,
分別是
的中點.
(Ⅰ)
判定AE與PD是否垂直,并說明理由
(Ⅱ)若
為
上的動點,
與平面
所成最大角的正切值為
,求二面角
的余弦值。
查看答案和解析>>