((本小題滿分12分)

如圖,DC⊥平面ABCEB // DC,AC =BC = EB = 2DC=2,∠ACB=120°,
P,Q分別為AEAB的中點。
(1)證明:PQ //平面ACD;   
(2)求AD與平面ABE所成角的正弦值。

15題

 

解:(1)因為P,Q分別為 AE,AB的中點,
所以PQ//EB.又DC//EB,因此PQ//DC,
從而PQ//平面ACD.………………………………5分     
(2)如圖,連接CQ, DP.
因為Q為AB的中點,且AC =BC,所以CQ⊥ AB.
因為DC⊥ 平面ABC,EB//DC,    
所以EB⊥ 平面ABC.
因此CQ⊥ EB
故CQ⊥ 平面ABE.
由(1)有PQ//DC,又PQ=EB=DC,
所以四邊形CQPD為平行四邊形,
故DP// CQ ,
因此DP ⊥平面ABE,∠ DAP為AD和平面ABE所成的角.
在Rt ∆DPA中,AD=,DP=1,
sin ∠ DAP=
因此AD和平面ABE所成角的的正弦值為………………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分14分)
如圖,平面平面,點E、F、O分別為線段PAPB、AC的中點,點G是線段CO的中點,,.求證:

(1)平面;
(2)∥平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖所示,平面,底面為菱形,的中點.
(1)求證:平面;
(2)求證://平面;
(3) 求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

、如圖所示,棱長為1的正方體中,,
(1)建立適當?shù)淖鴺讼,求M、N點的坐標。(2)求的長度。(12分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點。
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正切值;
(Ⅲ)求二面角P一EC一D的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知三棱柱,底面三角形為正三角形,側棱底面, 的中點,中點.
(Ⅰ) 求證:直線平面
(Ⅱ)求平面和平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在正方體中,異面直線的夾角的大小為__________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A\B、C是表面積為的球面上三點,且AB=2,BC=4,ABC=為球心,則二面角0-AB-C的大小為( )
A.           B.            C.           D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)
在直三棱柱ABC—A1B1C1中,AA1=1,AB=2,AC=1,,D為BC的中點。

(I)求證:平面ACC1A1⊥平面BCC1B;
(II)求直線DA1與平面BCC1B1所成角的大。
(III)求二面角A—DC1—C的大小。

查看答案和解析>>

同步練習冊答案