設二次函數(shù)滿足下列條件:①當時,的最小值為,且圖像關于直線對稱;②當時,恒成立.
(1)求的值;  
(2)求的解析式;
(3)若在區(qū)間上恒有,求實數(shù)的取值范圍.

(1)(2)(3)

解析試題分析:(1)在②中令,有,故.                  4分
(2)當時,的最小值為且二次函數(shù)關于直線對稱,
故設此二次函數(shù)為.                                    6分
因為,得.                                                   8分
所以.                                                    10分
(3)記,
顯然 ,在區(qū)間上恒有,即,        12分
,得,由的圖像只須,                    15分
解得.                                                          16分
考點:本小題主要考查二次函數(shù)的圖象和性質(zhì)及恒成立問題.
點評:二次函數(shù)是高中學習中比較重要的一類函數(shù),要準確掌握,靈活求解;恒成立問題一般轉(zhuǎn)化為最值問題解決,這是經(jīng)?疾榈念}型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2013年某工廠生產(chǎn)某種產(chǎn)品,每日的成本(單位:萬元)與日產(chǎn)量(單位:噸)滿足函數(shù)關系式,每日的銷售額(單位:萬元)與日產(chǎn)量的函數(shù)關系式

已知每日的利潤,且當時,
(1)求的值;
(2)當日產(chǎn)量為多少噸時,每日的利潤可以達到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

計算:
(1)          
(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品在該售價的基礎上每上漲1元,則每個月少賣10件(每件售價不能高于65元).設每件商品的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.(14分)
(1)求的函數(shù)關系式并直接寫出自變量的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A、B兩地的路程為240千米.某經(jīng)銷商每天都要用汽車或火車將噸保鮮品一次 性由A地運往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進行運輸,且須提前預訂.
現(xiàn)有貨運收費項目及收費標準表、行駛路程s(千米)與行駛時間t(時)的函數(shù)圖象(如圖1)、上周貨運量折線統(tǒng)計圖(如圖2)等信息如下:
貨運收費項目及收費標準表

運輸工具
運輸費單價:元/(噸•千米)
冷藏費單價:元/(噸•時)
固定費用:元/次
汽車
2
5
200
火車
1.6
5
2280
          
(1)汽車的速度為       千米/時,火車的速度為       千米/時:
(2)設每天用汽車和火車運輸?shù)目傎M用分別為(元)和(元),分別求、的函數(shù)關系式(不必寫出的取值范圍),及為何值時(總費用=運輸費+冷藏費+固定費用)
(3)請你從平均數(shù)、折線圖走勢兩個角度分析,建議該經(jīng)銷商應提前為下周預定哪種運輸工具,才能使每天的運輸總費用較?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)減函數(shù)(Ⅰ)求函數(shù);(Ⅱ)討論的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)證明:
(II)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
(Ⅰ)已知函數(shù)上具有單調(diào)性,求實數(shù)的取值范圍;
(Ⅱ)已知向量、兩兩所成的角相等,且,,,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

同步練習冊答案