【題目】第十三屆全國(guó)人大第二次會(huì)議于2019年3月5日在北京開(kāi)幕.為廣泛了解民意,某人大代表利用網(wǎng)站進(jìn)行民意調(diào)查.?dāng)?shù)據(jù)調(diào)查顯示,民生問(wèn)題是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問(wèn)題的約占.現(xiàn)從參與調(diào)查者中隨機(jī)選出200人,并將這200人按年齡分組,第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求;
(2)現(xiàn)在要從年齡較小的第1組和第2組中用分層抽樣的方法抽取5人,并再?gòu)倪@5人中隨機(jī)抽取2人接受現(xiàn)場(chǎng)訪談,求這兩人恰好屬于不同組別的概率;
(3)把年齡在第1,2,3組的居民稱(chēng)為青少年組,年齡在第4,5組的居民稱(chēng)為中老年組,若選出的200人中不關(guān)注民生問(wèn)題的中老年人有10人,問(wèn)是否有的把握認(rèn)為是否關(guān)注民生與年齡有關(guān)?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
【答案】(1);(2);(3)沒(méi)有99%的把握認(rèn)為是否關(guān)注民生與年齡有關(guān).
【解析】
(1)根據(jù)頻率分布直方圖,由頻率分布直方圖各小長(zhǎng)方形的面積之和為1,即可計(jì)算出頻率分布直方圖中的值;
(2)根據(jù)分層抽樣的公式計(jì)算出第1組和第2組中的人數(shù),列出從這5人中隨機(jī)抽取2人的所有基本事件及兩人恰好屬于不同組別的事件并求出相應(yīng)的種數(shù),再根據(jù)古典概型計(jì)算公式,即可求出這兩人恰好屬于不同組別的概率;
(3)根據(jù)已知可求出200人中不關(guān)注民生問(wèn)題的青少年有30人,然后列出列聯(lián)表,根據(jù)公式求,即可得出結(jié)論.
(1)因?yàn)?/span>,
解得.
(2)由題意可知從第1組選取的人數(shù)為人,設(shè)為,,
從第2組選取的人數(shù)為人,設(shè)為,,.
從這5人中隨機(jī)抽取2人的所有情況有:
,,,,,
,,,,,共10種.
這兩人恰好屬于不同組別有,,,,,,共6種.
所以所求的概率為.
(3)選出的200人中,各組的人數(shù)分別為:
第1組:人,
第2組:人,
第3組:人,
第4組:人,
第5組:人,
所以青少年組有人,中老年組有人,
因?yàn)閰⑴c調(diào)查者中關(guān)注此問(wèn)題的約占,即有人不關(guān)心民生問(wèn)題,
所以選出的200人中不關(guān)注民生問(wèn)題的青少年有30人.
于是得列聯(lián)表:
關(guān)注民生問(wèn)題 | 不關(guān)注民生問(wèn)題 | 合計(jì) | |
青少年 | 90 | 30 | 120 |
中老年 | 70 | 10 | 80 |
合計(jì) | 160 | 40 | 200 |
所以,
所以沒(méi)有的把握認(rèn)為是否關(guān)注民生與年齡有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠家具車(chē)間造A、B型兩類(lèi)桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A、B型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),而工廠造一張A、B型桌子分別獲利潤(rùn)2千元和3千元,試問(wèn)工廠每天應(yīng)生產(chǎn)A、B型桌子各多少?gòu),才能獲得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形是邊長(zhǎng)為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程x2+x-1=0的解可視為函數(shù)y=x+的圖象與函數(shù)y=的圖象交點(diǎn)的橫坐標(biāo),若x4+ax-4=0的各個(gè)實(shí)根x1,x2,…,xk(k≤4)所對(duì)應(yīng)的點(diǎn)(xi ,)(i=1,2,…,k)均在直線y=x的同側(cè),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,橢圓的長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點(diǎn),是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,棱的中點(diǎn)為,若光線從點(diǎn)出發(fā),依次經(jīng)三個(gè)側(cè)面,,反射后,落到側(cè)面(不包括邊界),則入射光線與側(cè)面所成角的正切值的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是橢圓的左、右焦點(diǎn),點(diǎn)是該橢圓上一點(diǎn),若當(dāng)時(shí),面積達(dá)到最大,最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為坐標(biāo)原點(diǎn),是否存在過(guò)左焦點(diǎn)的直線,與橢圓交于兩點(diǎn),使得的面積為?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐的底面是邊長(zhǎng)為的菱形,,點(diǎn)E是棱BC的中點(diǎn),,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).
1求證:平面平面BCF;
2若平面PDE,,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下面類(lèi)比推理:
①“若2a<2b,則a<b”類(lèi)比推出“若a2<b2,則a<b”;
②“(a+b)c=ac+bc(c≠0)”類(lèi)比推出“ (c≠0)”;
③“a,b∈R,若a-b=0,則a=b”類(lèi)比推出“a,b∈C,若a-b=0,則a=b”;
④“a,b∈R,若a-b>0,則a>b”類(lèi)比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.
其中結(jié)論正確的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com