已知a,b,c均為正數(shù),證明:a2+b2+c2+2≥6,并確定a,b,c為何值時,等號成立.
見解析
【解析】法一:因為a、b、c均為正數(shù),由平均值不等式得
a2+b2+c2≥3(abc),①
≥3(abc)-,②
所以2≥9(abc)-.
故a2+b2+c2+2≥3(abc)+9(abc)-.
又3(abc)+9(abc)-≥2=6 ,③
所以原不等式成立.
當(dāng)且僅當(dāng)a=b=c時,①式和②式等號成立.
當(dāng)且僅當(dāng)3(abc)=9(abc)-時,③式等號成立.
即當(dāng)且僅當(dāng)a=b=c=3時,原式等號成立.
法二:因為a,b,c均為正數(shù),由基本不等式得
a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,
所以a2+b2+c2≥ab+bc+ac.①
同理≥,②
故a2+b2+c2+2≥ab+bc+ac+3+3+3≥6.③
所以原不等式成立,
當(dāng)且僅當(dāng)a=b=c時,①式和②式等號成立,當(dāng)且僅當(dāng)a=b=c,(ab)2=(bc)2=(ac)2=3時,③式等號成立.
即當(dāng)且僅當(dāng)a=b=c=3時,原式等號成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用22練習(xí)卷(解析版) 題型:解答題
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用19練習(xí)卷(解析版) 題型:解答題
已知矩陣M=.
(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用16練習(xí)卷(解析版) 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C?PB?A的余弦值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用15練習(xí)卷(解析版) 題型:解答題
在極坐標(biāo)系中,已知圓ρ=2cos θ與直線3ρcos θ+4ρsin θ+a=0相切,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用13練習(xí)卷(解析版) 題型:解答題
如圖,點(diǎn)P(0,-1)是橢圓C1:=1(a>b>0)的一個頂點(diǎn),C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用13練習(xí)卷(解析版) 題型:填空題
已知橢圓=1(0<b<2)與y軸交于A,B兩點(diǎn),點(diǎn)F為該橢圓的一個焦點(diǎn),則△ABF面積的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用11練習(xí)卷(解析版) 題型:填空題
直線ax+by=1與圓x2+y2=1相交于A,B兩點(diǎn)(其中a,b是實(shí)數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題
已知點(diǎn)M(-3,0)、N(3,0)、B(1,0),動圓C與直線MN切于點(diǎn)B,分別過點(diǎn)M、N且與圓C相切的兩條直線相交于點(diǎn)P,則點(diǎn)P的軌跡方程為( )
A.x2-=1 (x>1) B.x2-=1(x>0)
C.x2-=1(x>0) D.x2-=1(x>1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com