若三條直線l1:4x+y+4=0,l2:mx+y+1=0,l3:x-y+1=0不能圍成三角形,則m的取值為(  )
A、4或-1B、1或-1
C、-1或4D、-1,1,4
考點(diǎn):兩條直線的交點(diǎn)坐標(biāo)
專題:直線與圓
分析:三條直線l1:4x+y+4=0,l2:mx+y+1=0,l3:x-y+1=0不能圍成三角形,可得l2∥l1或l2∥l3或l2經(jīng)過直線l1與l3的交點(diǎn),解出即可.
解答: 解:聯(lián)立
4x+y+4=0
x-y+1=0
,解得
x=-1
y=0

∴直線l1與l3的交點(diǎn)為(-1,0).
∵三條直線l1:4x+y+4=0,l2:mx+y+1=0,l3:x-y+1=0不能圍成三角形,
∴l(xiāng)2∥l1或l2∥l3或l2經(jīng)過直線l1與l3的交點(diǎn),
∴-m=-4,或-m=1,或-m+0+1=0.
解得m=4,±1.
故選:D.
點(diǎn)評(píng):本題考查了相互平行的直線斜率之間的關(guān)系、三角形的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx,g(x)
lnx
x
,若關(guān)于x的方程f(x)=g(x)在區(qū)間[
1
e
,e]內(nèi)有兩個(gè)實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是( 。
A、[
1
e2
,
1
2e
B、(
1
2e
,
1
e
]
C、(0,
1
e2
D、(
1
e
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象過點(diǎn)P(
π
3
,0)且圖象上與P點(diǎn)最近的一個(gè)最高點(diǎn)坐標(biāo)為(
π
12
,5).
(1)求函數(shù)的解析式;
(2)指出函數(shù)的減區(qū)間;
(3)當(dāng)x∈[-
π
6
, 
π
3
]
時(shí),求該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2ωx+2
3
cos2ωx-
3
(x∈R),ω>0,函數(shù)f(x)的最小正周期為π.
(1)求f(x)的解析式;
(2)已知g(x)的圖象和f(x)的圖象關(guān)于點(diǎn)M(
3
,0)對(duì)稱,求g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若函數(shù)f(x)為定義域D上的單調(diào)函數(shù),且存在區(qū)間(m,n)⊆D(m<n),使得當(dāng)x∈(m,n)時(shí),f(x)的取值范圍恰為(m,n),則稱函數(shù)f(x)是D上的“正函數(shù)”. 已知函數(shù)f (x)=ax(a>1)為R上的“正函數(shù)”,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知3b=2
3
asinB,且cosB=cosC,角A是銳角,則△ABC的形狀是( 。
A、直角三角形
B、等腰三角形
C、等腰直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=loga(x+3)-1(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,則
1
m
+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,若S4=10,S13=91.
(1)求Sn;
(2)若數(shù)列{Mn}滿足條件:M1=St1,當(dāng)n≥2時(shí),Mn=Stn-Stn-1,其中數(shù)列{tn}單調(diào)遞增,且t1=1,tn∈N*
①試找出一組t2,t3,使得M22=M1•M3;
②證明:對(duì)于數(shù)列{an},一定存在數(shù)列{tn},使得數(shù)列{Mn}中的各數(shù)均為一個(gè)整數(shù)的平方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,面積S=
3
2
abcosC.
(1)求角C的大;
(2)設(shè)函數(shù)f(x)=
3
sin
x
2
cos
x
2
+cos2
x
2
,求f(B)的最大值,及取得最大值時(shí)角B的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案