某同學(xué)對(duì)教材《選修2-2》上所研究函數(shù)f(x)=
1
3
x3-4x+4的性質(zhì)進(jìn)行變式研究,并結(jié)合TI-Nspire圖形計(jì)算器作圖進(jìn)行直觀驗(yàn)證(如圖所示),根據(jù)你所學(xué)的知識(shí),指出下列錯(cuò)誤的結(jié)論是( 。
A.f(x)的極大值為f(-2)=
28
3
B.f(x)的極小值為f(2)=-
4
3
C.f(x)的單調(diào)遞減區(qū)間為(-2,2)
D.f(x)在區(qū)間[-3,3]上的最大值為f(-3)=7

∵f(x)=
1
3
x3-4x+4,
∴f'(x)=x2-4=(x-2)(x+2),
由f'(x)=(x-2)(x+2)>0,解得x>2或x<-2,此時(shí)函數(shù)單調(diào)遞增,
由f'(x)=(x-2)(x+2)<0,解得-2<x<2,此時(shí)函數(shù)單調(diào)遞減,∴C結(jié)論正確.
∴當(dāng)x=-2時(shí),函數(shù)f(x)取得極大值f(-2)=
28
3
,∴A結(jié)論正確.
當(dāng)x=2時(shí),函數(shù)f(x)取得極小值f(2)=-
4
3
,∴B結(jié)論正確.
∵f(3)=1,f(-3)=7,
∴f(x)在區(qū)間[-3,3]上的最大值為f(-2)=
28
3
,∴D結(jié)論錯(cuò)誤.
故選:D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R,若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)f(x)=ax2+bx+c,直線l1:x=2,直線l2:y=3tx(其中-1<t<1,t為數(shù));.若直線l2與函數(shù)f(x)的圖象以及直線l1,l2與函數(shù)f(x)的圖象所圍成的封閉圖形如陰影所示.
(1)求y=f(x);
(2)求陰影面積s關(guān)于t的函數(shù)y=s(t)的解析式;(3)若過點(diǎn)A(1,m),m≠4可作曲線y=s(t),t∈R的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-2ax2+bx+c.
(Ⅰ)當(dāng)c=0時(shí),f(x)的圖象在點(diǎn)(1,3)處的切線平行于直線y=x+2,求a,b的值;
(Ⅱ)當(dāng)a=
3
2
,b=-9
時(shí),f(x)在點(diǎn)A,B處有極值,O為坐標(biāo)原點(diǎn),若A,B,O三點(diǎn)共線,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)g(x)=(a-2)x(x>-1),函數(shù)f(x)=ln(1+x)+bx的圖象如圖所示.
(I)求b的值;
(II)求函數(shù)F(x)=f(x)-g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=
3x
+1,則
lim
△x→0
f(1-△x)-f(1)
△x
的值為( 。
A.-
1
3
B.
1
3
C.
2
3
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=x3+ax2+ax(x∈R)不存在極值點(diǎn),則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=ax-ln(-x),x∈(-e,0),g(x)=-
ln(-x)
x
,其中e是自然常數(shù),a∈R.
(1)討論a=-1時(shí),f(x)的單調(diào)性、極值;
(2)求證:在(1)的條件下,|f(x)|>g(x)+
1
2

(3)是否存在實(shí)數(shù)a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)M,m分別是函數(shù)f(x)在[a,b]上的最大值和最小值,若M=m,則f′(x)( 。
A.等于0B.小于0C.等于1D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案