【題目】已知圓的圓心為原點,且與直線相切.
(1)求圓的方程;
(2)點在直線上,過點引圓的兩條切線,切點為,求證:直線恒過定點.
【答案】(1)(2)詳見解析
【解析】
試題分析:(1)由圓C與直線相切,得到圓心到直線的距離d=r,故利用點到直線的距離公式求出d的值,即為圓C的半徑,又圓心為原點,寫出圓C的方程即可;(2)由PA,PB為圓O的兩條切線,根據(jù)切線的性質(zhì)得到OA與AP垂直,OB與PB垂直,根據(jù)90°圓周角所對的弦為直徑可得A,B在以O(shè)P為直徑的圓上,設(shè)出P的坐標為(8,b),由P和O的坐標,利用線段中點坐標公式求出OP中點坐標,即為以O(shè)P為直徑的圓的圓心坐標,利用兩點間的距離公式求出OP的長,即為半徑,寫出以O(shè)P為直徑的圓方程,整理后,由AB為兩圓的公共弦,兩圓方程相減消去平方項,得到弦AB所在直線的方程,可得出此直線方程過(2,0),得證
試題解析:(1)依題意得:圓的半徑,……………2分
所以圓的方程為。……………4分
(2)是圓的兩條切線,。
在以為直徑的圓上。……………6分
設(shè)點的坐標為,則線段的中點坐標為。
以為直徑的圓方程為……………8分
化簡得:
為兩圓的公共弦,
直線的方程為……………10分
所以直線恒過定點。……………12分
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足.
(Ⅰ)若數(shù)列是常數(shù)列,求的值;
(Ⅱ)當時,求證: ;
(Ⅲ)求最大的正數(shù),使得對一切整數(shù)恒成立,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為增強市民的環(huán)境保護意識, 面向全市征召義務宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機抽取名按年齡分組: 第組,第2 組,第組,第組,第組,得到的頻率分布直方圖如圖所示,
(1)若從第組中用分層抽樣的方法抽取名志愿者參與廣場的宣傳活動, 應從第組各抽取多少名志愿者?
(2)在(1)的條件下, 該縣決定在這名志愿者中隨機抽取名志愿者介紹宣傳經(jīng)驗, 求第組至少有—名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象上有一點列,點在軸上的射影是,且 (且), .
(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;
(2)對任意的正整數(shù),當時,不等式恒成立,求實數(shù)的取值范圍.
(3)設(shè)四邊形的面積是,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,PA垂直于矩形ABCD所在的平面,E、F分別是AB、PD的中點,∠ADP=45°.
(1)求證:AF∥平面PCE.
(2)求證:平面PCD⊥平面PCE.
(3)若AD=2,CD=3,求點F到平面PCE的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD的底面是邊長為1的正方形,且側(cè)棱PC⊥底面ABCD,且PC=2,E是側(cè)棱PC上的動點
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。
(3)求二面角P-BD-C的正切值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)當時,設(shè),求證:對任意的,;
(2)當時,若對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)下列算法語句,將輸出的A值依次記為a1,a2,…,an,…,a2015;已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|<)的最小正周期是a1,且函數(shù)的圖象關(guān)于直線x=對稱。
(Ⅰ)求函數(shù)表達式;
(Ⅱ)已知△ABC中三邊a,b,c對應角A,B,C,a=4,b=4,∠A=30°,求。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com