精英家教網 > 高中數學 > 題目詳情
已知{an}是各項均為正數的等差數列,lga1、lga2、lga4成等差數列。又,n=1,2,3,…,
(Ⅰ)證明{bn}為等比數列;
(Ⅱ)如果無窮等比數列{bn}各項的和S=,求數列{an}的首項a1和公差d。
(注:無窮數列各項的和即當n→∞時數列前項和的極限)
(Ⅰ)證明:設{an}中首項為a1,公差為d,
∵lga1,lga2,lga4成等差數列,
∴2lga2=lga1·lga4
∴a22=a1·a4,即(a1+d)2=a1(a1+3d),
∴d=0或d=a1,
當d=0時,an=a1,
,∴{bn}為等比數列;
當d=a1時,an=na1,
,∴{bn}為等比數列;
綜上可知{bn}為等比數列。
(Ⅱ)解:∵無窮等比數列{bn}各項的和
∴|q|<1,
由(Ⅰ)知,q=,d=a1,
,∴a1=3,
。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知{an}是各項均為正數的等差數列,lga1、lga2、lga4成等差數列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數列;
(Ⅱ)如果無窮等比數列{bn}各項的和S=
1
3
,求數列{an}的首項a1和公差d.
(注:無窮數列各項的和即當n→∞時數列前項和的極限)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是各項均為正數的等差數列,lga1,lga2,lga4成等差數列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數列;
(Ⅱ)如果數列{bn}前3項的和等于
7
24
,求數列{an}的首項a1和公差d.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是各項均為正數的等比數列a1+a2=2(
1
a1
+
1
a2
),a3+a4+a5=64(
1
a3
+
1
a4
+
1
a5

(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=(an+
1
an
2,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是各項均為正數的等比數列,且a1+a2=2(
1
a1
+
1
a2
),a3+a4=32(
1
a3
+
1
a4
)

(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=an2+log2an,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是各項均為正數的等比數列,且a1與a5的等比中項為2,則a2+a4的最小值等于
 

查看答案和解析>>

同步練習冊答案