分析 由已知可求出g(x)的解析式,進(jìn)而將不等式g(1gx)>g(1)化為|lgx|>1,結(jié)合對數(shù)函數(shù)的圖象和性質(zhì),求出答案.
解答 解:∵f(x)=1gx,g(x)=f(|x|)=lg|x|,
∴當(dāng)g(1gx)>g(1)時,lg|lgx|>lg|1|=0,
∴|lgx|>1,
∴l(xiāng)gx>1,或lgx<-1,
解得:x∈(0,$\frac{1}{10}$)∪(10,+∞).
故答案為:(0,$\frac{1}{10}$)∪(10,+∞)
點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的圖象和性質(zhì),絕對值不等式的解法,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {m|-$\frac{4}{3}$≤m≤$\frac{1}{2}$} | B. | {m|m<$\frac{1}{2}$} | C. | {m|-$\frac{1}{2}$≤m≤$\frac{4}{3}$} | D. | {m|m≥$\frac{4}{3}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,-1) | C. | (-∞,+∞) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com