(2013•浙江)如圖,點(diǎn)P(0,﹣1)是橢圓C1+=1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑,l1,l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.

(1)      (2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)F1是橢圓的左焦點(diǎn),C是橢圓上的任一點(diǎn),證明:;
(3)過(guò)且與AB垂直的直線交橢圓于P、Q,若的面積是20 ,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知直線 和橢圓,橢圓C的離心率為,連結(jié)橢圓的四個(gè)頂點(diǎn)形成四邊形的面積為.
(1)求橢圓C的方程;
(2)若直線與橢圓C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)當(dāng)時(shí),設(shè)直線與y軸的交點(diǎn)為P,M為橢圓C上的動(dòng)點(diǎn),求線段PM長(zhǎng)度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)拋物線的頂點(diǎn)作射線與拋物線交于,若,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)過(guò)點(diǎn),且橢圓的離心率為
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過(guò)作直線.求直線是否恒過(guò)定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C1=1(a>b>0)的左、右焦點(diǎn)分別為為,恰是拋物線C2的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
(1)求C1的方程;
(2)平面上的點(diǎn)N滿足,直線l∥MN,且與C1交于A,B兩點(diǎn),若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為,離心率.
(1)求橢圓的方程;
(2)若直線兩點(diǎn),點(diǎn),問(wèn)是否存在,使?若存在求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,設(shè)P是圓上的動(dòng)點(diǎn),點(diǎn)D是P在軸上投影,M為PD上一點(diǎn),且

(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)求過(guò)點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,動(dòng)點(diǎn)與兩定點(diǎn)構(gòu)成,且,設(shè)動(dòng)點(diǎn)的軌跡為

(1)求軌跡的方程;
(2)設(shè)直線軸相交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案