在平面直角坐標系中,不等式組
x≤a
x+y≥0
x-y+4≥0
(a為常數(shù))表示的平面區(qū)域面積是9,那么實數(shù)a的值為( 。
A、3
2
+2
B、-3
2
+2
C、-5
D、1
分析:本題主要考查線性規(guī)劃的基本知識,先畫出約束條件
x≤a
x+y≥0
x-y+4≥0
的可行域,再分析不等式組
x≤a
x+y≥0
x-y+4≥0
(a為常數(shù))表示的平面區(qū)域面積是9,我們可以構(gòu)造一個關(guān)于a的方程,解方程即可求出實數(shù)a的值.
解答:精英家教網(wǎng)解:根據(jù)題意,
作出約束條件
x≤a
x+y≥0
x-y+4≥0
的可行域,
如圖,三角形的面積為9,
則|BC|=(a+4)-(-a)=2a-4,
A到直線BC的距離為a-(-2)=a+2,
S=
1
2
(a+2)(2a+4)=9

∴a=1或-5(舍),
故選D.
點評:平面區(qū)域的面積問題是線性規(guī)劃問題中一類重要題型,在解題時,關(guān)鍵是正確地畫出平面區(qū)域,然后結(jié)合有關(guān)面積公式求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案