【題目】費(fèi)馬點(diǎn)是指三角形內(nèi)到三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn)。當(dāng)三角形三個(gè)內(nèi)角均小于時(shí),費(fèi)馬點(diǎn)與三個(gè)頂點(diǎn)連線正好三等分費(fèi)馬點(diǎn)所在的周角,即該點(diǎn)所對(duì)的三角形三邊的張角相等均為。根據(jù)以上性質(zhì),函數(shù)的最小值為__________.
【答案】
【解析】
函數(shù)表示的是點(diǎn)(x,y)到點(diǎn)C(1,0)的距離與到點(diǎn)B(-1,0),到A(0,2)的距離之和,連接這三個(gè)點(diǎn)構(gòu)成了三角形ABC,由角DOB為,角DOC為,OD=,OC=,OA=,距離之和為:2OC+OA,求和即可.
根據(jù)題意畫(huà)出圖像,
函數(shù)表示的是點(diǎn)(x,y)到點(diǎn)C(1,0)的距離與到點(diǎn)B(-1,0),到A(0,2)的距離之和,設(shè)三角形這個(gè)等腰三角形的費(fèi)馬點(diǎn)在高線AD上,設(shè)為O點(diǎn)即費(fèi)馬點(diǎn),連接OB,OC,則角DOB為,角DOC為,B(-1,0)C(1,0),A(0,2),OD=,OC=,OA=,距離之和為:2OC+OA=+=2+.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)=[].
(Ⅰ)若曲線y= f(x)在點(diǎn)(1,)處的切線與軸平行,求a;
(Ⅱ)若在x=2處取得極小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>.
(1)若是單調(diào)函數(shù),且有零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若,求的值域;
(3)若恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的所有棱長(zhǎng)都是2,平面ABC,D,E分別是AC,的中點(diǎn).
求證:平面;
求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若從裝有個(gè)紅球和個(gè)黑球的口袋內(nèi)任取個(gè)球,則下列為互斥的兩個(gè)事件是( )
A.“至少有一個(gè)黑球”與“都是黑球”B.“一個(gè)紅球也沒(méi)有”與“都是黑球”
C.“至少有一個(gè)紅球”與“都是紅球”D.“恰有個(gè)黑球”與“恰有個(gè)黑球”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x,g(x)=(4﹣lnx)lnx+b(b∈R).
(1)若f(x)>0,求實(shí)數(shù)x的取值范圍;
(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求實(shí)數(shù)b的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進(jìn)行處理.據(jù)測(cè)算,每噴灑1個(gè)單位的去污劑,空氣中釋放的濃度(單位:毫克/立方米)隨著時(shí)間(單位:天)變化的函數(shù)關(guān)系式近似為,若多次噴灑,則某一時(shí)刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時(shí),它才能起到去污作用.
(1)若一次噴灑1個(gè)單位的去污劑,則去污時(shí)間可達(dá)幾天?
(2)若第一次噴灑1個(gè)單位的去污劑,6天后再?lài)姙?/span>個(gè)單位的去污劑,要使接下來(lái)的4天中能夠持續(xù)有效去污,試求的最小值?(精確到)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,已知直線與曲線交于不同的兩點(diǎn),.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某支上市股票在30天內(nèi)每股的交易價(jià)格(單位:元)與時(shí)間(單位:天)組成有序數(shù)對(duì),點(diǎn)落在如圖所示的兩條線段上.該股票在30天內(nèi)(包括30天)的日交易量(單位:萬(wàn)股)與時(shí)間(單位:天)的部分?jǐn)?shù)據(jù)如下表所示:
第天 | 4 | 10 | 16 | 22 |
(萬(wàn)股) | 36 | 30 | 24 | 18 |
(Ⅰ)根據(jù)所提供的圖象,寫(xiě)出該種股票每股的交易價(jià)格與時(shí)間所滿(mǎn)足的函數(shù)解析式;
(Ⅱ)根據(jù)表中數(shù)據(jù)確定日交易量與時(shí)間的一次函數(shù)解析式;
(Ⅲ)若用(萬(wàn)元)表示該股票日交易額,請(qǐng)寫(xiě)出關(guān)于時(shí)間的函數(shù)解析式,并求出在這30天中,第幾天的日交易額最大,最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com