【題目】設函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是______(寫出所有正確結(jié)論的序號)

①對任意的x∈(-∞,1),都有f(x)>0;

②存在x∈R,使ax,bx,cx不能構(gòu)成一個三角形的三條邊長;

③若△ABC是頂角為120°的等腰三角形,則存在x∈(1,2),使f(x)=0.

【答案】①②③

【解析】

中,利用不等式的性質(zhì)分析即可,在中,舉例a=2,b=3,c=4進行說明,中,利用零點存在性定理分析即可.

中,∵a,b,c△ABC的三條邊長,∴a+b>c,∵c>a>0,c>b>0,∴0<<1,0<<1,當x∈(-∞,1),f(x)=ax+bx-cx=cx[(x+(x-1]>cx+-1)=cx>0,故正確;

中,令a=2,b=3,c=4,a,b,c可以構(gòu)成三角形,但a2=4,b2=9,c2=16不能構(gòu)成三角形,故正確;

中,∵c>a>0,c>b>0,若△ABC頂角為120°的等腰三角形,∴a2+b2-c2<0,∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,根據(jù)函數(shù)零點存在性定理可知在區(qū)間(1,2)上存在零點,

x∈(1,2),使f(x)=0,故正確.

故答案為:①②③.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列三個等式:f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(ax+by)=af(x)+bf(y)(a+b=1).下列選項中,不滿足其中任何一個等式的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)某氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km)

(1)t4時,求s的值;

(2)st變化的規(guī)律用數(shù)學關(guān)系式表示出來;

(3)N城位于M地正南方向,且距M650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個頂點為,半焦距為,離心率,又直線交橢圓于, 兩點,中點.

1)求橢圓的標準方程;

2)若,求弦的長;

3)若點恰好平分弦,求實數(shù);

4)若滿足,求實數(shù)的取值范圍并求的值;

5)設圓與橢圓相交于點與點,的最小值,并求此時圓的方程;

6)若直線是圓的切線,證明的大小為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣mx+m,m∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求實數(shù)m的取值范圍.
(3)在(2)的條件下,任意的0<a<b,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)滿足,

求函數(shù)的解析式;

若關(guān)于x的不等式上恒成立,求實數(shù)t的取值范圍;

若函數(shù)在區(qū)間內(nèi)至少有一個零點,求實數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,已知直線l:x+y+a=0與點A(0,2),若直線l上存在點M滿足|MA|2+|MO|2=10(O為坐標原點),則實數(shù)a的取值范圍是(
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.如圖,已知,圖中的一系列圓是圓心分別為A、B的兩組同心圓,每組同心圓的半徑分別是1,2,3,,n,.利用這兩組同心圓可以畫出以A、B為焦點的雙曲線. 若其中經(jīng)過點M、N、P的雙曲線的離心率分別是.則它們的大小關(guān)系是 (用連接).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,其左頂點在圓上.

)求橢圓的方程;

)若點為橢圓上不同于點的點,直線與圓的另一個交點為.是否存在點,使得? 若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案