若曲線y=x3在點P處的切線的斜率等于3,則點P的坐標(biāo)為( 。
分析:求導(dǎo)函數(shù),利用曲線y=x3在點P處的切線的斜率等于3,建立方程,求出P的橫坐標(biāo),即可得出點P的坐標(biāo).
解答:解:設(shè)切點坐標(biāo)為(t,t3),則
∵f′(x)=3x2,若曲線y=x3在點P處的切線的斜率等于3,
∴f′(t)=3t2=3,
∴t=1或t=-1.
∴點P的坐標(biāo)為(-1,-1)或(1,1).
故選C.
點評:本題考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=x3在點P(1,1)處的切線與直線ax-by-2=0互相垂直,則
a
b
=
-
1
3
-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若曲線y=x3在點P(1,1)處的切線與直線ax-by-2=0互相垂直,則數(shù)學(xué)公式=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax-1(a∈R),其中f′(x)是f(x)的導(dǎo)函數(shù).

(1)若曲線f(x)在點(1,f(1))處的切線與直線2x-y+1=0平行,求a的值;

(2)設(shè)g(x)=f′(x)-ax-4,若對一切|a|≤1,都有g(shù)(x)<0恒成立,求x的取值范圍;

(3)設(shè)a=-p2時,若函數(shù)f(x)的圖象與直線y=2只有一個公共點,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西省太原五中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

若曲線y=x3在點P(1,1)處的切線與直線ax-by-2=0互相垂直,則=   

查看答案和解析>>

同步練習(xí)冊答案