已知矩形ABCD的邊AB⊥x軸,且矩形ABCD恰好能完全覆蓋函數(shù)y=asin2ax(a>0)的一個(gè)完整周期的圖象,則當(dāng)a變化時(shí),矩形ABCD的周長(zhǎng)的最小值為( )
A.
B.
C.
D.
【答案】分析:依題意,矩形ABCD的周長(zhǎng)l=2T+2×2a,利用基本不等式即可求得矩形ABCD的周長(zhǎng)的最小值.
解答:解:依題意,作圖如下:

∵a>0,矩形ABCD恰好能完全覆蓋函數(shù)y=asin2ax(a>0)的一個(gè)完整周期的圖象,
∴|AB|=2a,|BC|=T==,
∴矩形ABCD的周長(zhǎng)l=2T+2×2a=2×+4a≥2=4,
即矩形ABCD的周長(zhǎng)的最小值為:4
故選B.
點(diǎn)評(píng):本題考查正弦函數(shù)的圖象與基本不等式,求得矩形ABCD的周長(zhǎng)的表達(dá)式是關(guān)鍵,考查轉(zhuǎn)化思想與數(shù)形結(jié)合思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD的邊AB=4cm,BC=3cm,如圖所示,矩形的頂點(diǎn)A,B為某一橢圓的兩個(gè)焦點(diǎn),且橢圓經(jīng)過(guò)矩形的另外兩個(gè)頂點(diǎn)C,D,試建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD的邊AB=a,BC=2,PA⊥平面ABCD,PA=2,現(xiàn)有以下五個(gè)數(shù)據(jù):( 1 ) a=
1
2
 ;    ( 2 ) a=1 ;    ( 3 )a=
;    ( 4 ) a=2 ;    ( 5 ) a=4
,
當(dāng)在BC邊上存在點(diǎn)Q,使PQ⊥QD時(shí),則a可以取
①或②
①或②
.(填上一個(gè)正確的數(shù)據(jù)序號(hào)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂三模)已知矩形ABCD的邊AB⊥x軸,且矩形ABCD恰好能完全覆蓋函數(shù)y=asin2ax(a>0)的一個(gè)完整周期的圖象,則當(dāng)a變化時(shí),矩形ABCD的周長(zhǎng)的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD的邊長(zhǎng)為2,點(diǎn)P在線段BD上運(yùn)動(dòng),則
AP
AC
=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD的邊AB=1,BC=a,PA⊥平面ABCD,問(wèn)BC邊上是否存在點(diǎn)Q,使得PQ⊥QD?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案