設向量an=(cos
6
,sin
6
)
,向量b的模為k(k為常數(shù)),則y=|a1+b|2+|a2+b|2+…+|a10+b|2的最大值與最小值的差等于
 
分析:根據(jù)題意寫出y的表達式,再設出
b
=k(cosθ,sinθ)
并且計算出
a1
+
a2
…+
a10
的結果,然后代入最后求出函數(shù)的最值,進而得到答案.
解答:解:因為
an
=(cos
6
,sin
6
),
所以
an
2
cos2
6
+sin2
6
=1

y=|a1+b|2+|a2+b|2+…+|a10+b|2
=
a1
2
+
a2
2
+…+
a10
2
+10
 b 
2
+2
b
•(
a1
+
a2
…+
a10

=10+10k2+2
b
•(
a1
+
a2
…+
a10

因為
an
=(cos
6
,sin
6
),
所以
a1
=(
3
2
,
1
2
)
,
a2
=(
1
2
,
3
2
)
,
a3
=(0,1)
a4
=(-
1
2
,
3
2
)
a5
=(-
3
2
,
1
2
)

a6
=(-1,0)
,
a7
=(-
3
2
,-
1
2
)
,
a2
=(-
1
2
,-
3
2
)
,
a9
=(0,-1)
,
a10
=(
1
2
,-
3
2
)

所以
a1
+
a2
…+
a10
=(-1-
3
2
,
1
2

又設
b
=k(cosθ,sinθ)
,(k≥0,θ∈R)
所以y=10+10k2+2
b
•(
a1
+
a2
…+
a10

=10+10k2+2k(cosθ,sinθ)•(-1-
3
2
,
1
2

=10+10k2+2k
2+
3
cos(θ-α)
所以y的最大值為10+10k2+2k
2+
3
,最小值為10+10k2-2k
2+
3
,
所以最大值與最小值的差等于4k
2+
3
=2(
6
+
2
)k.
故答案為2(
6
+
2
)k.
點評:解決此類問題的關鍵是熟練掌握向量的有關基本運算以及有關三角恒等變換的運算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

平面向量也叫二維向量,二維向量的坐標表示及其運算可以推廣到n(n≥3)維向量,n維向量可用(x1,x2,x3,…xn)表示,設
a
=(a1,a2,a3,…an),規(guī)定向量 
a
b
  夾角θ的余弦cosθ=
aibi
ai2bi2 
a
=(1,1,1,1),
b
=(-1,1,1,1) 時,cosθ=(  )
A、-
1
2
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們把一系列向量
ai
(i=1,2,…,n)
按次序排成一列,稱之為向量列,記作{
an
}
.已知向量列{
an
}
滿足:
a1
=(1,1),
an
=(xn,yn)=
1
2
(xn-1-yn-1xn-1+yn-1)(n≥2)
,.
(1)證明數(shù)列{
|an
|}
是等比數(shù)列;
(2)設θn表示向量
an-1
,
an
間的夾角,求證cosθn是定值;
(3)若bn=2nθn-1,Sn=b1+b2+…+bn,求
lim
n→∞
bnSn2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們學過平面向量(二維向量)),空間向量(三位向量),二維、三維向量的坐標表示及其運算可以推廣到n(n≥3)維向量.n維向量可用 (x1,x2,x3,x4,…,xn)表示.設
a
=(a1,a2,a3,a4,…,an),設
b
=(b1,b2,b3,b4,…,bn),a與b夾角θ的余弦值為cosθ=
a1b1+a2b2+…+anbn
a
2
1
+
a
2
2
+…+
a
2
n
b
2
1
+
b
2
2
+…+
b
2
n
.當兩個n維向量,
a
=(1,1,1,…,1),
b
=(-1,-1,1,1,…,1)時,cosθ=( 。
A、
n-1
n
B、
n-2
n
C、
n-3
n
D、
n-4
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量也叫二維向量,二維向量的坐標表示及其運算可以推廣到n(n≥3)維向量,n維向量可用(x1,x2,x3,x4,…,xn)表示.設
a
=(a1,a2,a3,a4,…,an),
b
=(b1,b2,b3,b4,…,bn),規(guī)定向量
a
b
夾角θ的余弦為cosθ=
n
i=1
aibi
(
n
i=1
a
2
1
)(
n
i=1
b
2
1
.已知n維向量
a
,
b
,當
a
=(1,1,1,1,…,1),
b
=(-1,-1,1,1,1,…,1)時,cosθ等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量an=(cos,sin),向量b的模為k(k為常數(shù)),則y=|a1+b|2+|a2+b|2+…+|a10+b|2的最大值與最小值的差等于_____________.

查看答案和解析>>

同步練習冊答案