如圖,四棱錐的底面是正方形,棱底面,=1,的中點.

(1)證明平面平面; 
(2)求二面角的余弦值.

(1)詳見解析.(2)

解析試題分析:(1) 由,推出底面,進而推出,結(jié)合可得底面,得平面平面;(2)取CD的中點F,連接AC與BD,交點為M,。模偷闹悬cN,連接EN,FN,易知為二面角的平面角,在中,求出該余弦值.
試題解析:證明:(1) ∵,的中點, ∴.
底面,∴.又由于,,故底面,
所以有.又由題意得,故.

于是,由,,可得底面.
故可得平面平面 
(2)取CD的中點F,連接AC與BD,交點為M,。模偷闹悬cN,連接EN,FN,易知為二面角的平面角,又,,由勾股定理得,在中,
所以二面角的余弦值為(用空間向量做,答案正確也給6分)
考點:證明線面垂直,二面角求法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,側(cè)棱AA1與底面ABC成60°的 角,AA1=2.底面ABC是邊長為2的正三角形,其重心為G點,E是線段BC1上一點,且BE=3(1)BC1.

(1)求證:GE∥側(cè)面AA1B1B;
(2)求平面B1GE與底面ABC所成銳二面角的正切值;
(3)求點B到平面B1GE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正方形與梯形所在平面互相垂直,,,點在線段上且不與重合。

(Ⅰ)當(dāng)點M是EC中點時,求證:BM//平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,點M是A1B的中點,點N是B1C的中點,連接MN

(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知正三棱柱中,,,上的動點.

(1)求五面體的體積;
(2)當(dāng)在何處時,平面,請說明理由;
(3)當(dāng)平面時,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,,,,.

(Ⅰ)證明:;
(Ⅱ)若求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.  (1)求證:BF∥平面ACGD; (2)求二面角D­CG­F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,連結(jié)A1B與∠A1BC=60°.

(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設(shè)D是BB1的中點,求三棱錐D-A1BC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖, 在三棱錐中,

(1)求證:平面平面;
(2)若,,當(dāng)三棱錐的體積最大時,求的長.

查看答案和解析>>

同步練習(xí)冊答案