13.求函數(shù)y=$\sqrt{{x}^{2}-4x+5}$+$\sqrt{{x}^{2}+2x+5}$的最小值.

分析 運用配方,可知函數(shù)表示x軸上一點P(x,0)到定點A(2,1),B(-1,-2)的距離,由于A,B分別在x軸的兩邊,連接AB,由兩點之間線段最短,計算即可得到最小值.

解答 解:函數(shù)y=$\sqrt{{x}^{2}-4x+5}$+$\sqrt{{x}^{2}+2x+5}$
=$\sqrt{(x-2)^{2}+1}$+$\sqrt{(x+1)^{2}+4}$
=$\sqrt{(x-2)^{2}+(0-1)^{2}}$+$\sqrt{(x+1)^{2}+(0+2)^{2}}$,
表示x軸上一點P(x,0)到定點A(2,1),B(-1,-2)的距離,
由于A,B分別在x軸的兩邊,連接AB,
可得|AB|=$\sqrt{(2+1)^{2}+(1+2)^{2}}$=3$\sqrt{2}$.
則函數(shù)y=$\sqrt{{x}^{2}-4x+5}$+$\sqrt{{x}^{2}+2x+5}$的最小值為3$\sqrt{2}$.

點評 本題考查函數(shù)最值的求法,注意運用轉化思想,考查運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{ax}{e^x}$,其中a>0,且函數(shù)f(x)的最大值是$\frac{1}{e}$
(1)求實數(shù)a的值;
(2)若函數(shù)g(x)=lnf(x)-b有兩個零點,求實數(shù)b的取值范圍;
(3)若對任意的x∈(0,2),都有f(x)<$\frac{1}{{k+2x-{x^2}}}$成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(1)求函數(shù)f(x)的單調區(qū)間,并比較3n與π3的大;
(2)若正實數(shù)a滿足對任意x∈(0,+∞)都有ax2f(x)+1≥0,求正實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,內角A,B,C的對邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求C
(2)若△ABC的面積為5$\sqrt{3}$,b=5,求sinA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知{an},{bn}為兩非零有理數(shù)列(即對任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無理數(shù)列(即對任意的i∈N*,di為無理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對任意的n∈N*恒成立,試求{dn}的通項公式.
(2)若{dn3}為有理數(shù)列,試證明:對任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要條件為$\left\{{\begin{array}{l}{{a_n}=\frac{1}{{1+{d_n}^6}}}\\{{b_n}=\frac{{{d_n}^3}}{{1+{d_n}^6}}}\end{array}}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2}+{{(-1)}^n}θ)}}$,試計算bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.計算
(1)27${\;}^{-\frac{1}{3}}$+64${\;}^{\frac{2}{3}}$-3-1+($\sqrt{2}$-1)0
(2)$\frac{lg8+lg125-lg2-lg5}{lg\sqrt{10}•lg0.1}$.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(文)試卷(解析版) 題型:解答題

已知函數(shù)(其中),.

(1)若命題“”是真命題,求的取值范圍;

(2)設命題;命題,若是真命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(文)試卷(解析版) 題型:選擇題

下列說法中正確的是( )

A.“”是“函數(shù)是奇函數(shù)”的充要條件

B.命題“若,則”的否命題是“若,則

C.若為假命題,則均為假命題

D.若,,則

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(文)試卷(解析版) 題型:選擇題

觀察下列散點圖,其中兩個變量的相關關系判斷正確的是( )

A.為正相關,為負相關,為不相關

B.為負相關,為不相關,為正相關

C.為負相關,為正相關,為不相關

D.為正相關,為不相關,為負相關

查看答案和解析>>

同步練習冊答案