函數(shù)y=sin2x在點M()處的切線斜率為(   )

A.-1         B.-2          C.1         D.2

分析:本題主要考查復(fù)合函數(shù)的導(dǎo)數(shù)及導(dǎo)數(shù)的幾何意義.

解∵y′=(sin2x)′=cos2x(2x)′=2cos2x,

=2cos(2×)=1.

答案:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

是否存在實數(shù)a,使得函數(shù)y=sin2x+acosx+
5
8
a-
3
2
在閉區(qū)間[0,
π
2
]
上的最大值是1?若存在,求出對應(yīng)的a值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x+2cosx在區(qū)間[-
3
,a]上的值域為[-
1
4
,2],則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin2x的圖象沿 x軸向左平移
π
6
個單位,縱坐標伸長到原來的2倍(橫坐標不變)后得到函數(shù)y=f(x)圖象,對于函數(shù)y=f(x)有以下四個判斷:
①該函數(shù)的解析式為y=2sin(2x+
π
6
)
;
②該函數(shù)圖象關(guān)于點(
π
3
,0)
對稱;、墼摵瘮(shù)在[0,
π
6
]
上是增函數(shù);
④函數(shù)y=f(x)+a在[0,
π
2
]
上的最小值為
3
,則a=2
3
.其中,正確判斷的序號是( 。
A、①③B、②④C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①已知函數(shù)y=sin2x+acos2x的圖象關(guān)于直線x=-
π
3
對稱,則a的值為
3
3
;
②函數(shù)y=lgsin(
π
4
-2x)
的單調(diào)增區(qū)間是[kπ-
π
8
, kπ+
8
)  (k∈Z)
;
③設(shè)p=sin15°+cos15°,q=sin16°+cos16°,r=p•q,則p、q、r的大小關(guān)系是p<q<r;
④要得到函數(shù)y=cos2x-sin2x的圖象,需將函數(shù)y=
2
cos2x
的圖象向左平移
π
8
個單位;
⑤函數(shù)f(x)=sin(2x+θ)-
3
cos(2x+θ)
是偶函數(shù)且在[0,
π
4
]
上是減函數(shù)的θ的一個可能值是
6
.其中正確命題的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案