已知的頂點,過點的內(nèi)角平分線所在直線方程是,過點C的中線所在直線的方程是
(1)求頂點B的坐標(biāo);(2)求直線BC的方程;
(1)(10,5);(2)
解析試題分析:(1)設(shè).因為B點在直線上,所以可得 ①.又因為A,B兩點的中點在直線上,所以可得 ②.所以由①,②可解得的值,即可求出B點的坐標(biāo).
(2)由于過點的內(nèi)角平分線所在直線方程為.所以通過求出點A關(guān)于平分線的對稱點,然后再與點B寫出直線方程即為所求的直線BC的方程.
試題解析:(1)設(shè),則中點,
由,解得,故. 6分
(2)設(shè)點關(guān)于直線的對稱點為,
則,得,即,
直線經(jīng)過點和點,故直線的方程. 12分
考點:1.直線方程的表示.2.求關(guān)于直線的點的對稱點.3.線段的中點問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:()過點(2,0),且橢圓C的離心率為.
(1)求橢圓的方程;
(2)若動點在直線上,過作直線交橢圓于兩點,且為線段中點,再過作直線.求直線是否恒過定點,若果是則求出該定點的坐標(biāo),不是請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線過點,直線的斜率為且過點.
(1)求、的交點的坐標(biāo);
(2)已知點,若直線過點且與線段相交,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當(dāng)AB中點為P時,求直線AB的斜率
(2)當(dāng)AB中點在直線上時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(已知橢圓 經(jīng)過點其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點.求到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線經(jīng)過點,傾斜角,
(1)寫出直線的參數(shù)方程
(2)設(shè)與圓相交與兩點,求點到兩點的距離之積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com