【題目】已知正方體ABCD-A1B1C1D1的棱長為a,點E,F,G分別為棱AB,AA1,C1D1的中點.下列結論中,正確結論的序號是______.
①過E,F,G三點作正方體的截面,所得截面為正六邊形;
②B1D1∥平面EFG;
③BD1⊥平面ACB1;
④異面直線EF與BD1所成角的正切值為;
⑤四面體ACB1D1的體積等于a3
【答案】①③④
【解析】
根據公理3,作截面可知①正確;根據直線與平面的位置關系可知②不正確;根據線面垂直的判定定理可知③正確;根據異面直線所成的角的定義求得異面直線EF與BD1的夾角的正切值為,可知④正確;用正方體體積減去四個正三棱錐的體積可知⑤不正確.
解:延長EF分別與B1A1,B1B的延長線交于N,Q,連接GN交A1D1于H,
設HG與B1C1的延長線交于P,連接PQ交CC1于I,交BC于M,
連FH,HG,GI,IM,ME,則截面六邊形EFHGIM為正六邊形,故①正確;
B1D1與HG相交,故B1D1與平面 EFG相交,所以②不正確;
∵BD1⊥AC,BD1⊥B1C,且AC與B1C相交,所以BD1⊥平面ACB1,故③正確;
取的中點,連接,則,
所以就是異面直線EF與BD1的夾角,
設正方體的邊長為,可得:,,,
所以是直接三角形.可得:.
可得異面直線EF與BD1的夾角的正切值為,故④正確;
四面體ACB1D1的體積等于正方體的體積減去四個正三棱錐的體積,
即為,故⑤不正確.
故答案為:①③④
科目:高中數學 來源: 題型:
【題目】“一帶一路”近年來成為了百姓耳熟能詳的熱門詞匯,對于旅游業(yè)來說,“一帶一路”戰(zhàn)略的提出,讓“絲路之旅”超越了旅游產品、旅游線路的簡單范疇,賦予了旅游促進跨區(qū)域融合的新理念. 而其帶來的設施互通、經濟合作、人員往來、文化交融更是將為相關區(qū)域旅游發(fā)展帶來巨大的發(fā)展機遇.為此,旅游企業(yè)們積極拓展相關線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務.某市旅游局為了解游客的情況,以便制定相應的策略. 在某月中隨機抽取甲、乙兩個景點10天的游客數,統計得到莖葉圖如下:
(1)若將圖中景點甲中的數據作為該景點較長一段時期內的樣本數據,以每天游客人數頻率作為概率.今從這段時期內任取4天,記其中游客數超過130人的天數為,求概率 ;
(2)現從上圖20天的數據中任取2天的數據(甲、乙兩景點中各取1天),記其中游客數不低于125且不高于135人的天數為,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱柱中,底面為正方形, 平面為棱的中點, 為棱的中點, 為棱的中點.
(1)證明:平面平面;
(2)若,棱上有一點,且,使得二面角的余弦值為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某片經濟林的生長情況,隨機測量其中的100棵樹的底部周長,得到如下數據(單位:cm):
135 98 102 110 99 121 110 96 100 103
125 97 117 113 110 92 102 109 104 112
109 124 87 131 97 102 123 104 104 128
105 123 111 103 105 92 114 108 104 102
129 126 97 100 115 111 106 117 104 109
111 89 110 121 80 120 121 104 108 118
129 99 90 99 121 123 107 111 91 100
99 101 116 97 102 108 101 95 107 101
102 108 117 99 118 106 119 97 126 108
123 119 98 121 101 113 102 103 104 108
(1)列出頻率分布表;
(2)畫出頻率分布直方圖與頻率折線圖;
(3)估計該片經濟林中底部周長小于100cm的樹占多少,底部周長不小于120cm的樹占多少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知復數z=,(m∈R,i是虛數單位).
(1)若z是純虛數,求m的值;
(2)設是z的共軛復數,復數+2z在復平面上對應的點在第一象限,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面幾種推理是合情推理的是( )
①由圓的性質類比出球的有關性質;②由直角三角形、等腰三角形、等邊三角形內角和是 歸納出所有三角形的內角和都是;③由,滿足,,推出是奇函數;④三角形內角和是,四邊形內角和是,五邊形內角和是,由此得凸多邊形內角和是.
A. ①②B. ①③④C. ①②④D. ②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓的方程為,點的坐標為.
(1)求過點且與圓相切的直線方程;
(2)過點任作一條直線與圓交于不同兩點,,且圓交軸正半軸于點,求證:直線與的斜率之和為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f (x)在R上可導,其導函數為f ′(x),且函數f (x)在x=-2處取得極大值,則函數y=f ′(x)的圖象可能是
A. B.
C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com