設(shè)a>1,函數(shù)f(x)=ax+1-2.
(1)求f(x)的反函數(shù)f-1(x);
(2)若f-1(x)在[0,1]上的最大值與最小值互為相反數(shù),求a的值;
(3)若f-1(x)的圖象不經(jīng)過第二象限,求a的取值范圍.
【答案】分析:(1)欲求原函數(shù)f(x)=ax+1-2的反函數(shù),即從原函數(shù)式中反解出x,后再進(jìn)行x,y互換,即得反函數(shù)的解析式.
(2)先研究f-1(x)在[0,1]的單調(diào)性,得到當(dāng)x取何值時(shí),此函數(shù)取得最值,最后得到等式:f-1(0)+f'(1)=0,解此關(guān)于a方程即可求得a值;
(3)由對(duì)數(shù)函數(shù)的圖象可知,f-1(x)的圖象不經(jīng)過第二象限的充要條件是f-1(x)的圖象與x軸的交點(diǎn)位于x軸的非負(fù)半軸上,從而列出等式求出圖象與x軸交點(diǎn)橫坐標(biāo)x=a-2,令其非負(fù)即可求得a的取值范圍.
解答:解:(1)因?yàn)閍x+1>0,
所以f(x)的值域是{y|y>-2}.(2分)
設(shè)y=ax+1-2,解得x=loga(y+2)-1,
則f-1(x)=loga(x+2)-1,{x|x>-2}.
(2)解:當(dāng)a>1時(shí),f-1(x)=loga(x+2)-1為(-2,+∞)上的增函數(shù),(6分)
所以f-1(0)+f'(1)=0即(loga2-1)+(loga3-1)=0
解得a=
所以f(x)的反函數(shù)為f-1(x)=loga(x+2)-1,(x>-2).(4分)
(3)解:當(dāng)a>1時(shí),
函數(shù)f-1(x)是(-2,+∞)上的增函數(shù),且經(jīng)過定點(diǎn)(-1,-1).
所以f-1(x)的圖象不經(jīng)過第二象限的充要條件是f-1(x)的圖象與x軸的交點(diǎn)位于x軸的非負(fù)半軸上.(11分)
令loga(x+2)-1=0,解得x=a-2,
由a-2≥0,解得a≥2.(13分)
點(diǎn)評(píng):本題考查反函數(shù)的求法、對(duì)數(shù)函數(shù)的圖象變換及其性質(zhì),屬于對(duì)數(shù)函數(shù)綜合題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為
12
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,函數(shù)f(x)=ax+1在區(qū)間[1,2]上的最大值與最小值之差為2,則a=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,函數(shù)f(x)=logax在區(qū)間[a,3a]上的最大值與最小值之差為
1
2
,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,函數(shù)f(x)=2x3-3(a+1)x2+6ax,x∈[0,2].
(1)若f(x)在[1,2]上不單調(diào),求a的取值范圍;
(2)令M(a)為f(x)的最大值,求M(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,函數(shù)f(x)=
1
2
(ax-a-x),則使f-1(x)>1成立的x的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案