已知f(x)是定義域?yàn)椋?,+∞)的函數(shù),當(dāng)x∈(0,1)時(shí)f(x)<0.現(xiàn)針對(duì)任意正實(shí)數(shù)x、y,給出下列四個(gè)等式:
①f(xy)=f(x) f(y);
②f(xy)=f(x)+f(y);
③f(x+y)=f(x)+f(y);
④f(x+y)=f(x) f(y).
請(qǐng)選擇其中的一個(gè)等式作為條件,使得f(x)在(0,+∞)上為增函數(shù).并證明你的結(jié)論.
【答案】分析:選擇的等式代號(hào)②.賦值可得f(1)=0,f( )=-f(x).設(shè)0<x1<x2,可得f( )<0,可得f( )=f(x1)-f(x2)<0,由單調(diào)性的定義可得.
解答:解:選擇的等式代號(hào)是    ②.                      3′
證明:在f(xy)=f(x)+f(y)中,令x=y=1,得f(1)=f(1)+f(1),故f(1)=0.  6′
又f(1)=f(x•)=f(x)+f( )=0,f( )=-f(x). (※)               9′
設(shè)0<x1<x2,則0<<1,
∵x∈(0,1)時(shí)f(x)<0,∴f( )<0
又∵f( )=f(x1)+f( ),由(※)知f( )=-f(x2
∴f( )=f(x1)-f(x2)<0
∴f(x1)<f(x2),f(x)在(0,+∞)上為增函數(shù).                         14′
點(diǎn)評(píng):本題考抽象函數(shù)的單調(diào)性和證明,正確賦值是解決問(wèn)題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義域在R上的奇函數(shù),若f(x)的最小正周期為3,且f(1)>0,f(2)=
2m-3m+1
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義域?yàn)镽的奇函數(shù),f(-4)=-2,f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,若兩正數(shù)a,b滿(mǎn)足f(a+2b)<2,則
a+4
b+4
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義域?yàn)镽的偶函數(shù),若f(x+2)=f(x),且當(dāng)x∈[1,2]時(shí),f(x)=x2+2x-1,那么f(x)在[0,1]上的表達(dá)式是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義域?yàn)镽的奇函數(shù),且在(0,+∞)內(nèi)有1003個(gè)零點(diǎn),則f(x)的零點(diǎn)的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義域?yàn)镽的偶函數(shù),若f(x)的最小正周期是2,且當(dāng) x∈[1,2]時(shí),f(x)=x2-2x-1,那么f(x)在[0,1]上的表達(dá)式是
f(x)=x2-2x-1
f(x)=x2-2x-1

查看答案和解析>>

同步練習(xí)冊(cè)答案