【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一個周期內(nèi)的圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求g(x)=f(3x+ )﹣1在[﹣ , ]上的值域.

【答案】
(1)解:由圖形可得:A=2,

將點(diǎn)(0, ),( , )代入,有φ ,

∵0<|φ|<π,

,

故f(x)=2sin( +


(2)解:g(x)=f(3x+ )﹣1=2sin[ (3x+ )+ ]﹣1

=2sin(2x+ )﹣1=2cos2x﹣1,

當(dāng)x∈[﹣ , ]時,2x∈[﹣ , ],cos2x∈[﹣ ,1],

故g(x)=f(3x+ )﹣1在∈[﹣ , ]上的值域?yàn)椋篬﹣2,1]


【解析】(1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由特殊點(diǎn)的坐標(biāo)求出φ的值,再根據(jù)五點(diǎn)法作圖求出ω的值,從而求得該函數(shù)的解析式.(2)利用三角函數(shù)恒等變換的應(yīng)用先求函數(shù)解析式g(x)=2cos2x﹣1,由x∈[﹣ , ],利用余弦函數(shù)的圖形和性質(zhì)即可得解其值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

20

5

25

10

15

25

合計

30

20

50

(Ⅰ)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(Ⅱ)在上述抽取的6人中選2人,求恰有一名女性的概率;
(Ⅲ)為了研究心肺疾病是否與性別有關(guān),請計算出統(tǒng)計量K2 , 你有多大的把握認(rèn)為心肺疾病與性別有關(guān)?
下面的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是直角梯形, , 平面平面

Ⅰ)求證: 平面

Ⅱ)求平面和平面所成二面角(小于)的大。

Ⅲ)在棱上是否存在點(diǎn)使得平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在等差數(shù)列{an}中,a2=11,a5=5.
(1)求通項公式an
(2)求前n項和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)解不等式f(x)< ;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知( + n的展開式中,第五項與第七項的二項式系數(shù)相等.
(I )求該展開式中所有有理項的項數(shù);
(II)求該展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=(1﹣x)|x﹣3|在(﹣∞,a]上取得最小值﹣1,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,2]
B.
C.
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= +bx+c有極值點(diǎn)x1 , x2(x1<x2),且f(x1)=x1 , 則關(guān)于x的方程[f(x)]2+2af(x)+b=0的不同實(shí)數(shù)根的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)判斷f(x)的奇偶性;
(2)當(dāng)x∈[﹣1,1]時,f(x)≥m恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案