16.如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)D在邊BC上,AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)若AA1=$\frac{{\sqrt{3}}}{2}$AB,求二面角C1-AD-C的大。

分析 (1)根據(jù)面面垂直的判定定理即可證明平面ADC1⊥平面BCC1B1;
(2)根據(jù)二面角的定義求出二面角的平面角,結(jié)合三角形的邊角關(guān)系即可,求二面角C1-AD-C的大小.

解答 解:$\left.\begin{array}{l}\left.\begin{array}{l}(1){C_1}C⊥平面ABC\\ AD?平面ABC\end{array}\right\}⇒{C_1}C⊥AD\\ AD⊥{C_1}D\\ \\ D{C_1}∩C{C_1}={C_1}\end{array}\right\}⇒$AD⊥平面CDC1
則AD⊥平面BCC1B1,
∵AD?平面ADC1,
∴平面ADC1⊥平面BCC1B1
(2)∵C1D⊥AD,CD⊥AD,
∴∠CDC1為二面角的平面角,
在Rt△C1CD中,∵$A{A_1}=\frac{{\sqrt{3}}}{2}AB$,
∴$CD=\frac{1}{2}{C_1}D,∠CD{C_1}={60^0}$,
∴二面角C1-AD-C的大小為600

點(diǎn)評(píng) 本題主要考查面面垂直的判定,以及二面角的求解,利用定義法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l1:y=k(x-1)與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)交于M、N兩點(diǎn),點(diǎn)P是線段MN的中點(diǎn),且直線OP的斜率為-$\frac{3}{4k}$(k∈R,k≠0),其中O為坐標(biāo)原點(diǎn).
(1)求橢圓C的離心率;
(2)若橢圓C的焦距為2c=2,AB是直線l2:y=kx與橢圓C相交所得的弦,試判斷$\frac{|AB{|}^{2}}{|MN|}$是否為定值?若是定值,請(qǐng)求出這個(gè)定值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知正△PAB和菱形ABCD,面PAB⊥面ABCD,∠BAD=60°.
(1)求證:AB⊥PD; 
(2)求PC與平面PAD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知斜線段長(zhǎng)是它在平面上的射影長(zhǎng)的2倍,則斜線與平面所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.P是直角△ABC所在平面外一點(diǎn),若PA⊥平面ABC,PA=AB=AC,則平面PBC和平面ABC夾角的正切值是(  )
A.1B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在四棱錐PABCD中,底面ABCD是直角梯形,其中AD⊥AB,CD∥AB,AB=4,CD=2,側(cè)面PAD是邊長(zhǎng)為2的等邊三角形,且與底面ABCD垂直,E為PA的中點(diǎn).
(1)求證:DE∥平面PBC;
(2)求二面角EBDA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.四面體ABCD中,點(diǎn)G1,G2,G3,G4分別是△BCD,△ACD,△ABD,△ABC的重心.求證:AG1,BG2,CG3,DG4交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知圓E的極坐標(biāo)方程為ρ=4$\sqrt{3}$sin(θ+$\frac{π}{6}$),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2t+n}\\{y=4t}\end{array}\right.$(t為參數(shù),n∈R)
(1)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立直角坐標(biāo)系,求圓E的直角坐標(biāo)方程;
(2)圓E上有且僅有三點(diǎn)到直線l的距離為$\sqrt{3}$,求實(shí)數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知拋物線y2=4x上有一條長(zhǎng)為6的動(dòng)弦AB,則AB的中點(diǎn)到y(tǒng)軸的最短距離是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案