【題目】(1)選修4﹣2:矩陣與變換
設(shè)曲線2x2+2xy+y2=1在矩陣A= (a>0)對(duì)應(yīng)的變換作用下得到的曲線為x2+y2=1.
(Ⅰ)求實(shí)數(shù)a,b的值.
(Ⅱ)求A2的逆矩陣.

【答案】解:(Ⅰ)設(shè)曲線2x2+2xy+y2=1上的點(diǎn)(x,y)在矩陣A= (a>0)對(duì)應(yīng)的變換作用下得到點(diǎn)(x′,y′)
= ,∴
∵x′2+y′2=1
∴(ax)2+(bx+y)2=1
∴(a2+b2)x2+2bxy+y2=1
∵2x2+2xy+y2=1
∴a2+b2=2,2b=2
∴a=1,b=1
∴A=(
(Ⅱ)A2=( )( )=( ), =1
∴A2的逆矩陣為
【解析】(Ⅰ)確定點(diǎn)在矩陣A= (a>0)對(duì)應(yīng)的變換作用下得到點(diǎn)坐標(biāo)之間的關(guān)系,利用變換前后的方程,即可求得矩陣A;(Ⅱ)先計(jì)算A2的值,求出行列式的值,即可得到A2的逆矩陣.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)MN.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),軸正半軸為極軸)中,圓的方程為

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點(diǎn),,若點(diǎn)的坐標(biāo)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點(diǎn).
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,過(guò)橢圓C上一點(diǎn)P(2,1)作x軸的垂線,垂足為Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過(guò)點(diǎn)Q的直線l交橢圓C于點(diǎn)A,B,且3+=,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.

(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點(diǎn),求CM與平面A1BE所成角的大小;
(3)線段BC上是否存在點(diǎn)P,使平面A1DP與平面A1BE垂直?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的半焦距為左焦點(diǎn)為,右頂點(diǎn)為,拋物線與橢圓交于兩點(diǎn),若四邊形是菱形,則橢圓的離心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=f(x)由方程x|x|+y|y|=1確定,下列結(jié)論正確的是(請(qǐng)將你認(rèn)為正確的序號(hào)都填上)
·(1)f(x)是R上的單調(diào)遞減函數(shù);
·(2)對(duì)于任意x∈R,f(x)+x>0恒成立;
·(3)對(duì)于任意a∈R,關(guān)于x的方程f(x)=a都有解;
·(4)f(x)存在反函數(shù)f1(x),且對(duì)于任意x∈R,總有f(x)=f1(x)成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案