設(shè)f(x)=x3+bx2+cx,又m是一個常數(shù).已知當m<0或m>4時,f(x)-m=0只有一個實根;當0<m<4時,f(x)-m=0有三個相異實根,現(xiàn)給出下列命題:
(1)f(x)-4=0和f'(x)=0有一個相同的實根;
(2)f(x)=0和f'(x)=0有一個相同的實根;
(3)f(x)+3=0的任一實根大于f(x)-1=0的任一實根;
(4)f(x)+5=0的任一實根小于f(x)-2=0的任一實根.其中錯誤命題的個數(shù)是( )
A.4
B.3
C.2
D.1
【答案】分析:根據(jù)當m<0或m>4時,f(x)-m=0只有一個實根;當0<m<4時,f(x)-m=0有三個相異實根,得到0為函數(shù)的極小值,4為函數(shù)的極大值,根據(jù)題意可畫出函數(shù)的大致圖象,由圖象可判斷命題的真假.
解答:解:有題意可知4為f(x)=x3+bx2+cx的極大值,0為f(x)=x3+bx2+cx+d的極小值,
有右圖,(1)(2)(4)正確.
故選D
點評:此題考查學生掌握利用導(dǎo)數(shù)研究函數(shù)極值的方法,靈活運用數(shù)形結(jié)合的數(shù)學思想解決數(shù)學問題,是一道基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3+x2+x(x∈R),又若a∈R,則下列各式一定成立的是( 。
A、f(a)≤f(2a)B、f(a2)≥f(a)C、f(a2-1)>f(a)D、f(a2+1)>f(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3-ax2-bx-c,x∈[-1,1],記y=|f(x)|的最大值為M.
(Ⅰ)當a=c=0,b=
34
時,求M的值;
(Ⅱ)當a,b,c取遍所有實數(shù)時,求M的最小值.
(以下結(jié)論可供參考:對于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,當且僅當a,b,c,d同號時取等號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3+ax2+bx+c,又k是一個常數(shù),已知當k<0或k>4時,f(x)-k=0只有一個實根,當0<k<4時,f(x)-k=0有三個相異實根,則下列命題中錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3+ax2+bx+1的導(dǎo)函數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R,則曲線y=f(x)在點(1,f(1))處的切線方程為
6x+2y-1=0
6x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=x3,則對于任意實數(shù)a,b,“a+b≥0”是“f(a)+f(b)≥0”的
 
條件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)

查看答案和解析>>

同步練習冊答案