橢圓
的兩個(gè)焦點(diǎn)及其與坐標(biāo)軸的一個(gè)交點(diǎn)正好是一個(gè)等邊三角形的三個(gè)頂點(diǎn),且橢圓上的點(diǎn)到焦點(diǎn)距離的最小值為
,求橢圓的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)
已知橢圓
,直線
,F(xiàn)為橢圓
的右焦點(diǎn),M為橢圓
上任意一點(diǎn),記M到直線L的距離為d.
(Ⅰ) 求證:
為定值;
(Ⅱ) 設(shè)過右焦點(diǎn)F的直線m的傾斜角為
,m交橢圓
于A、B兩點(diǎn),且
,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知直線
過橢圓
的右焦點(diǎn)
,拋物線:
的焦點(diǎn)為橢圓
的上頂點(diǎn),且直線
交橢圓
于
、
兩點(diǎn),點(diǎn)
、
、
在直線
上的射影依次為點(diǎn)
、
、
.
(1)求橢圓
的方程;
(2)若直線
l交
y軸于點(diǎn)
,且
,當(dāng)
變化時(shí),探求
的值是否為定值?若是,求出
的值,否則,說明理由;
(3)連接
、
,試探索當(dāng)
變化時(shí),直線
與
是否相交于定點(diǎn)?若是,請求出定點(diǎn)的坐標(biāo),并給予證明;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓的一個(gè)焦點(diǎn)為
,若橢圓上存在點(diǎn)
,滿足以橢圓短軸為直徑的圓與線段
相切于線段
的中點(diǎn),則該橢圓的離心率
為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
:
的焦點(diǎn)分別為
,如果橢圓上存在點(diǎn)
,使得
·
,則橢圓離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
的離心率為
,過右焦點(diǎn)
且斜
率為
的直線與
相交于
兩點(diǎn).若
,則
▲
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
P是橢圓
上的動(dòng)點(diǎn), 作
PD⊥
y軸,
D為垂足, 則
PD中點(diǎn)的軌跡方程為 ( )
A
B
C
D
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
方程
表示焦點(diǎn)在
軸上的橢圓,則
的取值范圍是______
_____
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線
在y軸上的截距為m(m≠0),直線
交橢圓于A、B兩個(gè)不同點(diǎn)。
(1)求橢圓的方程;
(2)求m的取值范圍;
查看答案和解析>>