18.下列命題正確的是( 。
A.命題“$?{x_0}∈R,{x_0}^2+1>3{x_0}$”的否定是“$?{x_0}∈R,{x^2}+1>3x$”
B.“函數(shù)f(x)=cosax-sinax的最小正周期為 π”是“a=2”的必要不充分條件
C.x2+2x≥ax在x∈[1,2]時(shí)有解?(x2+2x)min≥(ax)min在x∈[1,2]時(shí)成立
D.“平面向量$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角”的充分必要條件是“$\overrightarrow a$•$\overrightarrow b$<0”

分析 A,命題“$?{x_0}∈R,{x_0}^2+1>3{x_0}$”的否定是“?x0∈R,x02+1≤3x0“;
B,由函數(shù)f(x)=cosax-sinax的最小正周期為 π”⇒“a=±2;
C,例a=2時(shí),x2+2x≥2x在x∈[1,2]上有解,而(x2+2x)min=3<2xmax=4;
D,當(dāng)“$\overrightarrow a$•$\overrightarrow b$<0”時(shí),平面向量$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角或平角.

解答 解:對(duì)于A,命題“$?{x_0}∈R,{x_0}^2+1>3{x_0}$”的否定是“?x0∈R,x02+1≤3x0“,故錯(cuò);
對(duì)于B,由函數(shù)f(x)=cosax-sinax的最小正周期為 π”⇒“a=±2,故正確;
對(duì)于C,例a=2時(shí),x2+2x≥2x在x∈[1,2]上有解,而(x2+2x)min=3<2xmax=4,∴故錯(cuò);
對(duì)于D,當(dāng)“$\overrightarrow a$•$\overrightarrow b$<0”時(shí),平面向量$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角或平角,∴“平面向量$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角”的必要不充分條件是“$\overrightarrow a$•$\overrightarrow b$<0”,故錯(cuò).
故選:B

點(diǎn)評(píng) 本題考查了命題真假的判定,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某同學(xué)證明不等式$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$的過(guò)程如下:要證$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$,只需證$\sqrt{7}$+$\sqrt{5}$>$\sqrt{11}$+1,即證7+2$\sqrt{7×5}$+5>11+2$\sqrt{11}$+1,即證$\sqrt{35}$>$\sqrt{11}$,即證35>11.因?yàn)?5>11成立,所以原不等式成立.這位同學(xué)使用的證明方法是( 。
A.綜合法B.分析法
C.綜合法,分析法結(jié)合使用D.其他證法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知點(diǎn)A(2,m),B(1,2),C(3,1),若$\overrightarrow{AB}•\overrightarrow{CB}=|{\overrightarrow{AC}}|$,則實(shí)數(shù)m的值為$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.正四棱臺(tái)的上、下底面邊長(zhǎng)分別為1cm,3cm,側(cè)棱長(zhǎng)為2cm,則棱臺(tái)的側(cè)面積為( 。
A.4B.8C.4$\sqrt{3}$D.8$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.點(diǎn)P(1,4)關(guān)于直線y=-x的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是(  )
A.(1,-4)B.(-4,1)C.(4,-1)D.(-4,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.過(guò)點(diǎn)A(4,-1)且在x軸和y軸上的截距相等的直線方程是x+y-3=0,或x+4y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x,y滿足$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y≤1}\end{array}\right.$,z=2x+y的最大值為m,若正數(shù)a,b滿足a+b=m,則$\frac{1}{a}+\frac{4}$的最小值為(  )
A.9B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列{an}中,a1=1且$\frac{1}{{{a_{n+1}}}}$=$\frac{1}{a_n}$+1(n∈N*),則an=$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知sinx+$\sqrt{3}$cosx=$\frac{8}{5}$,則sin(x+$\frac{π}{3}$)=$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案