已知函數(shù)
(I)若為的極值點(diǎn),求實(shí)數(shù)的值;
(II)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值。
(I)(II) (Ⅲ) 實(shí)數(shù)的最大值為0
解析試題分析:(I)
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/07/f/o06no3.png" style="vertical-align:middle;" />為的極值點(diǎn),所以,即,
解得。經(jīng)檢驗(yàn),合題意
(II)因?yàn)楹瘮?shù)在上為增函數(shù),所以
在上恒成立。
?當(dāng)時(shí),在上恒成立,所以在上為增函數(shù),故 符合題意。 6分
?當(dāng)時(shí),由函數(shù)的定義域可知,必須有對恒成立,
故只能,所以在上恒成立。
令函數(shù),其對稱軸為,
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/bf/f/v62bl.png" style="vertical-align:middle;" />,所以,
要使在上恒成立,
只要即可,即,
所以。
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/bf/f/v62bl.png" style="vertical-align:middle;" />,所以。
綜上所述,a的取值范圍為。
(Ⅲ)當(dāng)時(shí),方程可化為。
問題轉(zhuǎn)化為在上有解,即求函數(shù)的值域。
因?yàn)楹瘮?shù),令函數(shù),
則,
所以當(dāng)時(shí),,從而函數(shù)在上為增函數(shù),
當(dāng)時(shí),,從而函數(shù)在上為減函數(shù),
因此。
而,所以,因此當(dāng)時(shí),b取得最大值0.
考點(diǎn):本小題主要考查導(dǎo)數(shù)在研究函數(shù)性質(zhì)中的應(yīng)用,考查學(xué)生分類討論思想的應(yīng)用.
點(diǎn)評:導(dǎo)數(shù)是研究函數(shù)性質(zhì)的有力工具,求極值時(shí)要注意驗(yàn)根,因?yàn)闃O值點(diǎn)處的導(dǎo)數(shù)值為0,但是導(dǎo)數(shù)值為0的點(diǎn)不一定是極值點(diǎn),涉及到含參數(shù)問題,一般離不開分類討論,分類標(biāo)準(zhǔn)要盡量做到不重不漏.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在(1,2)上是增函數(shù),在(0,1)上是減函數(shù)。
求的值;
當(dāng)時(shí),若在內(nèi)恒成立,求實(shí)數(shù)的取值范圍;
求證:方程在內(nèi)有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,其中a>0,
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)求切于點(diǎn)的切線方程;
(3)求函數(shù)在上的最大值與最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的圖象經(jīng)過點(diǎn),且在處的切線方程是.
(I)求的解析式;
(Ⅱ)求的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為實(shí)數(shù),
(1)求導(dǎo)數(shù);
(2)若,求在[-2,2] 上的最大值和最小值;
(3)若在和上都是遞增的,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com