設橢圓=1上有三點A,B,C,且∠AOB=∠BOC=∠COA(O為橢圓中心),求證:為定值.
科目:高中數學 來源:廣東省汕頭市澄海中學2009-2010學年高二上學期期中考試數學理科試題 題型:013
設橢圓=1(a>b>0)的離心率為e=,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)
必在圓x2+y2=2內
必在圓x2+y2=2上
必在圓x2+y2=2外
以上三種情形都有可能
查看答案和解析>>
科目:高中數學 來源:江西省吉水中學2012屆高三第一次月考數學理科試題 題型:044
設橢圓C:=1(a>b>0)的左、右焦點分別為F1、F2,上頂點為A,在x軸負半軸上有一點B,滿足=,且AB⊥AF2.
(1)求橢圓C的離心率;
(2)若過A、B、F2三點的圓恰好與直線l:x-y-3=0相切,求橢圓C的方程;
(3)在(2)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源:2015屆福建晉江季延中學高二上學期期中考試文數學試卷(解析版) 題型:選擇題
設橢圓+=1(a>b>0)的離心率為e=,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)( )
A.必在圓x2+y2=2內 B.必在圓x2+y2=2上
C.必在圓x2+y2=2外 D.以上三種情形都有可能
查看答案和解析>>
科目:高中數學 來源: 題型:
設橢圓+=1(a>b>0)的離心率為e=,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)( )
(A)必在圓x2+y2=2內
(B)必在圓x2+y2=2上
(C)必在圓x2+y2=2外
(D)以上三種情形都有可能
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com