復(fù)數(shù)Z=
2
-i3
1-
2
i
,則復(fù)數(shù)
.
Z
對應(yīng)的點在( 。
A、第一象限或第三象限
B、y軸負(fù)半軸上
C、x軸正半軸上
D、第二象限或第四象限
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義即可得出.
解答: 解:復(fù)數(shù)Z=
2
-i3
1-
2
i
=
2
+i
1-
2
i
=
(
2
+i)(1+
2
i)
(1-
2
i)(1+
2
i)
=
3i
3
=i,
則復(fù)數(shù)
.
Z
=-i對應(yīng)的點(0,-1)在y軸負(fù)半軸上.
故選:B.
點評:本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=sin2(x+
π
4
)-cos2(x+
π
4
),下列選項中正確的是( 。
A、f(x)在(
π
4
π
2
)上是遞增的
B、f(x)的圖象關(guān)于原點對稱
C、f(x)的最小正周期為2π
D、f(x)的最大值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:ax+3y+1=0,l2:x+(a-2)y+a=0.若l1∥l2,則直線l1與l2之間的距離為(  )
A、
2
3
B、
2
2
3
C、
4
3
D、
4
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x≥-1},N={x|2-x2≥0},則M∪N=(  )
A、[-
2
,+∞)
B、[-1,
2
]
C、[-1,+∞)
D、(-∞,-
2
]∪[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),對x∈R,都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時,f(x)=(
1
2
x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實根,則a的取值范圍是(  )
A、(1,2)
B、(2,+∞)
C、(1,
34
D、(
34
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=6x的焦點F,點P在拋物線上,M(-1,0)若
PM
PF
=5,則以點M為圓心,過點P的圓的方程為( 。
A、x2+y2+2x-7=0
B、x2+y2+2x-9=0
C、x2+y2+2x-11=0
D、x2+y2+2x-13=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin2013°的值屬于區(qū)間( 。
A、(-
1
2
,0)
B、(-1,-
1
2
C、(
1
2
,1)
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:
x-2
x+3
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}各項均為正數(shù),Sn為其前n項和,a1=-1,對于n∈N+.總有an2,2Sn,an+12成等比數(shù)列.
(1)求數(shù)列{an}的通項an;
(2)若數(shù)列{bn}的前n項和Tn=2an-b,求證:bn=2-
1
2n-1

查看答案和解析>>

同步練習(xí)冊答案