4.已知函數(shù)$f(x)={cos^2}\;\frac{x}{2}-{sin^2}\;\frac{x}{2}\;+sin\;x$,若${x_0}\;∈({0\;,\;\frac{π}{4}})$且$f({x_0})=\frac{{4\sqrt{2}}}{5}$,則cos2x0=$\frac{24}{25}$.

分析 由三角函數(shù)中的恒等變換應(yīng)用化簡函數(shù)解析式可得f(x)=cosx+sinx,由$f({x_0})=\frac{{4\sqrt{2}}}{5}$,可得sinx0+cosx0=$\frac{4\sqrt{2}}{5}$,兩邊平方解得:sin2x0=$\frac{7}{25}$,由${x_0}\;∈({0\;,\;\frac{π}{4}})$,可得2x0∈(0,$\frac{π}{2}$),從而可求cos2x0=$\sqrt{1-si{n}^{2}2{x}_{0}}$的值.

解答 解:∵$f(x)={cos^2}\;\frac{x}{2}-{sin^2}\;\frac{x}{2}\;+sin\;x$=cosx+sinx,
又∵$f({x_0})=\frac{{4\sqrt{2}}}{5}$,即:sinx0+cosx0=$\frac{4\sqrt{2}}{5}$,
∴兩邊平方可得:1+sin2x0=$\frac{32}{25}$,解得:sin2x0=$\frac{7}{25}$,
∵${x_0}\;∈({0\;,\;\frac{π}{4}})$,
∴2x0∈(0,$\frac{π}{2}$),
∴cos2x0=$\sqrt{1-si{n}^{2}2{x}_{0}}$=$\sqrt{1-(\frac{7}{25})^{2}}$=$\frac{24}{25}$.
故答案為:$\frac{24}{25}$.

點評 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,同角三角函數(shù)關(guān)系式的應(yīng)用,二倍角公式的應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x+1)=lgx,則函數(shù)f(2x-1)的定義域為( 。
A.(-1,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)長方體的長、寬、高分別為2,1,1,其頂點都在同一個球面上,則該球的體積為$\sqrt{6}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓C1:(x-3)2+(y+1)2=1,圓C2與圓C1關(guān)于直線2x-y-2=0對稱,則圓C2的方程為( 。
A.(x-1)2+(y-2)2=1B.x2+(y-1)2=1C.(x+1)2+(y-1)2=1D.(x+2)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,sin2C≤(sinA-sinB)2+sinAsinB,則C的取值范圍是( 。
A.(0,$\frac{π}{6}$]B.[$\frac{π}{6}$,π)C.(0,$\frac{π}{3}$]D.[$\frac{π}{3}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=cos(2x-$\frac{π}{6}$)+cos(2x-$\frac{5π}{6}$),
(1)求f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=|x-a|+|x+1|,若對任意的x1,x2∈[2,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0恒成立,則實數(shù)a的取值范圍為(-∞,2].f(x)最小值為3,則實數(shù)a的取值范圍為{2,-4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=(-2,0),$\overrightarrow$=(cosα,-sinα),α∈($\frac{π}{2}$,π),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.π-αB.αC.$\frac{π}{2}$-αD.$\frac{3π}{2}$-α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=1,a2=4,an+2=3an+1-2an(n∈N*).
(1)設(shè)bn=an+1-2an,證明數(shù)列{bn}既是等差數(shù)列又是等比數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案