1.在正方體ABCD-A1B1C1D1中,與平面ACC1A1平行的棱共有( 。
A.2條B.3條C.4條D.6條

分析 根據(jù)題意畫出正方體,結(jié)合圖形即可得出正確的結(jié)論.

解答 解:如圖所示,
正方體ABCD-A1B1C1D1中,
與平面ACC1A1平行的棱是BB1和DD1,共有2條.
故選:A.

點評 本題考查了正方體中線面平行的問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線y=3-x與兩坐標軸圍成的區(qū)域為Ω1,不等式組$\left\{\begin{array}{l}y≤3-x\\ x≥0\\ y≥2x\end{array}\right.$所形成的區(qū)域為Ω2,現(xiàn)在區(qū)域Ω1中隨機放置一點,則該點落在區(qū)域Ω2的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知y=f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),若y=f′(x)的圖象如圖,則f(x)的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.以橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的頂點為頂點,離心率為2的雙曲線方程( 。
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1或$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{27}$=1
C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{48}$=1D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對于實數(shù)x,用[x]表示不超過x的最大整數(shù),如[0.32]=0,[5.68]=5.若n為正整數(shù),an=[$\frac{n}{4}$],Sn為數(shù)列{an}的前n項和,則S40=( 。
A.190B.180C.170D.160

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$E:\frac{x^2}{4}+{y^2}=1$的左右頂點分別為A,B,點P為橢圓上異于A,B的任意一點.
(Ⅰ)求直線PA與PB的斜率之積;
(Ⅱ)過點Q(-1,0)作與x軸不重合的直線交橢圓E于M,N兩點.問:是否存在以MN為直徑的圓經(jīng)過點A,若存在,請求出直線MN.若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線$y=\sqrt{3}x$的傾斜角為(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z滿足iz=|3+4i|-i,則z的共軛復(fù)數(shù)的虛部是( 。
A.-5B.1C.5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a$|=1,$\overrightarrow a$⊥$\overrightarrow b$,則$\overrightarrow a$-2$\overrightarrow b$在$\overrightarrow a$方向上的投影為( 。
A.1B.$\frac{{\sqrt{7}}}{7}$C.-1D.$\frac{2\sqrt{7}}{7}$

查看答案和解析>>

同步練習(xí)冊答案