設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大。
分析:由題意可得 
aa•bb
ab•ba
=aa-b•bb-a=(
a
b
)
a-b
,當(dāng)a>b>0時(shí),可得 aabb>abba.當(dāng) b>a>0時(shí),同理可得aabb>abba.綜上可得aabb與abba 的大小關(guān)系.
解答:解:∵a>0,b>0,且a≠b,而且
aa•bb
ab•ba
=aa-b•bb-a=(
a
b
)
a-b
,
當(dāng)a>b>0時(shí),由
a
b
>1,a-b>0,可得 (
a
b
)
a-b
>1,∴aabb>abba
當(dāng) b>a>0時(shí),由0<
a
b
<1,a-b<0,可得 (
a
b
)
a-b
>1,∴aabb>abba
綜上可得,aabb>abba
點(diǎn)評(píng):本題主要考查用作商比較法比較兩個(gè)正實(shí)數(shù)的大小關(guān)系,不等式性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,且a+b=1,求證:(a+
1
a
)2+(b+
1
b
)2
25
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,且2a+b=1,則
2
a
+
1
b
的最小值是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)設(shè)a>0,b>0,且a+b=2,
1
a
+
1
b
的最小值為m,記滿足x2+y2≤3m的所有整點(diǎn)坐標(biāo)為(xi,yi)(i=1,2,3,…,n),則
n
i=1
|xiyi|
20
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,且a+b≤4,則有( 。
A、
1
ab
1
2
B、
ab
≥2
C、
1
a
+
1
b
≥1
D、
1
a+b
1
4

查看答案和解析>>

同步練習(xí)冊答案