A. | (-3,0)∪(3,+∞) | B. | (-∞,-3)∪(0,3) | C. | (-∞,-3)∪(3,+∞) | D. | (-3,0)∪(0,3) |
分析 易判斷f(x)在(-∞,0)上的單調(diào)性及f(x)圖象所過特殊點,作出f(x)的草圖,根據(jù)圖象可解不等式.
解答 解:∵f(x)在R上是奇函數(shù),且f(x)在(0,+∞)上是增函數(shù),
∴f(x)在(-∞,0)上也是增函數(shù),
由f(3)=0,得f(-3)=-f(3)=0,
即f(-3)=0,
作出f(x)的草圖,如圖所示:
由圖象,得xf(x)<0?$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$,
解得0<x<3或-3<x<0,
∴xf(x)<0的解集為:(-3,0)∪(0,3),
故選:D.
點評 本題考查函數(shù)奇偶性、單調(diào)性的綜合應用,考查數(shù)形結(jié)合思想,靈活作出函數(shù)的草圖是解題關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $\frac{4\sqrt{3}}{3}$ | C. | 2 | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A⊆B | B. | B⊆A | ||
C. | A∩B=∅ | D. | 集合A、B間沒有包含關(guān)系 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com