設l,m為兩條不同的直線,α為一個平面,m∥α,則”l⊥α”是”l⊥m”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】分析:由線面垂直的性質,我們可以判斷出“l(fā)⊥α”時,“l(fā)⊥m”是否成立,根據(jù)線面垂直的判定方法,及幾何特征,我們可以判斷“l(fā)⊥m”時,“l(fā)⊥α”是否成立,根據(jù)判斷出的結論,結合充分必要條件的定義,即可得到答案.
解答:解:∵m∥α,則“l(fā)⊥α”時,“l(fā)⊥m”成立,
“l(fā)⊥m”時,l與α可能平行也可能相交,
故“l(fā)⊥α”是“l(fā)⊥m”的充分不必要條件
故選A
點評:本題考查的知識點是直線與平面垂直的判定及性質,充要條件的判定,其中由線面垂直的性質及線面垂直的判定方法和幾何特征,判斷“l(fā)⊥α”⇒“l(fā)⊥m”,“l(fā)⊥m”⇒“l(fā)⊥α”是否成立,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

7、設l,m為兩條不同的直線,α為一個平面,m∥α,則”l⊥α”是”l⊥m”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設l,m為兩條不同的直線,α,β為兩個不同的平面,下列命題中正確的是
②④
②④
.(填序號)
①若l⊥α,m∥β,α⊥β,則l⊥m;
②若l∥m,m⊥α,l⊥β,則α∥β;
③若l∥α,m∥β,α∥β,則l∥m;
④若α⊥β,α∩β=m,l?β,l⊥m,則l⊥α.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省高三下學期2月月考理科數(shù)學試卷 題型:選擇題

設 l、m 為兩條不同的直線,、為兩個不同的平面,則下列命題中正確的是

(A) 若 l ∥m,l ∥,則 m∥

(B) 若 ,l ∥,則 l⊥

(C) 若 l⊥,,則 l ∥

(D) 若 l ⊥m,l⊥且m⊥,則

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年新課標高三(上)數(shù)學一輪復習單元驗收3(文科)(解析版) 題型:選擇題

設l,m為兩條不同的直線,α為一個平面,m∥α,則”l⊥α”是”l⊥m”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案